RESEARCH TRIANGLE INSTITUTE

RTI/2227/00-09
Date: May 1985

Project Report No. 9
ADSORPTION, DISPOSITION, METABOLISM AND EXCRETION OF CROTONALDEHYDE

Dates of Study: July 1983 to August 1984
Contract No. NOI-ES-1-5007
Pharmacokinetics of Xenobiotics

Submitted to:
National Institute of Environmental Health Sciences
P. O. Box 12874

Research Triangle Park, NC 27709

Prepared by:

Assistant Director for
Bioorganic Chemistry
Chemistry and Life Sciences

The following report presents results of a study conducted by a contract laboratory for the National Toxicology Program (NTP). The report may not have been peer reviewed. The findings and conclusions for this study should not be construed to represent the view of NTP or the U.S. Government.

Project Report No. 9

ADSORPTION, DISPOSITION, METABOLISM AND EXCRETION OF CROTONALDEHYDE

Dates of Study: July 1983 to August 1984
 Contract No. NO1-ES-1-5007
 Pharmacokinetics of Xenobiotics

Submitted to:
National Institute of Environmental
Health Sciences
P. O. Box 12874

Research Triangle Park, NC 27709

Prepared by:

Assistant Director for
Bioorganic Chemistry
Chemistry and Life Sciences

Abstract

[${ }^{14}$ C]Crotonaldehyde of greater than 96% radiochemical purity was obtained as a l:9 ethanol:water solution by high performance liquid chromatography of commercial [$\left.{ }^{14} \mathrm{C}\right]$ crotonaldehyde. When $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde was incubated at a concentration of $300 \mu \mathrm{~g} / \mathrm{mL}$ with a 20% suspension of stomach contents in normal saline for 2 h at $37^{\circ} \mathrm{C}, 94 \%$ was recovered unchanged and another 5% was bound to particulate material. In plasma, 42% of a $7 \mu \mathrm{~g} / \mathrm{mL}$ solution of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde was recovered intact after 5 min at $37^{\circ} \mathrm{C} ; 15 \%$ after 30 min .

After intravenous administration of ca. $3 \mathrm{mg} / \mathrm{kg},\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde was rapidly metabolized and excreted. Within 6 h of dosing, 31% of the dose was excreted as ${ }^{14} \mathrm{CO}_{2}$ in breath and 37% as unknown metabolites in urine. After 72 h , approximately half of the dose had been excreted in urine and 40% in breath. Elimination of ${ }^{14} \mathrm{C}$ by breath and urine was (at least) biphasic, with similar half lives of ca. 2 and 13 h calculated for each route. Parent compound accounted for less than 1% of the urinary excretion of ${ }^{14} \mathrm{C}$ and, crotonic acid for less than 2 percent.

Less than 1% of the dose was excreted in feces. There was no significant accumulation of ${ }^{14} \mathrm{C}$ in any tissue. Blood and major tissues

exhibited rapid initial elimination of ${ }^{14} \mathrm{C}$, with half-lives of ca 1 h followed by much slower elimination of the remaining ${ }^{14} \mathrm{C}$ with halflives of 2.5 days or greater. It would not be unexpected for the slowly eliminated ${ }^{14} \mathrm{C}$ to be products of the reaction of crotonaldehyde and bio-molecules.

Orally administered [$\left.{ }^{14} \mathrm{C}\right]$ crotonaldehyde at doses of $0.7,3$ and 35 $\mathrm{mg} / \mathrm{kg}$ was greater than 90% absorbed. Within 12 h of dosing, 78,74 and 60 percent of the dose, respectively, had been excreted in breath and urine. In 3 days, 86,83 and 82%, respectively, had been excreted by these routes. An additional 7% of the dose was excreted in feces.

Table of Contents

Page
Abstract 1
List of Figures 5
List of Tables 6
List of Participants 8
1.0 Introduction. 9
2.0 Materials and Methods 10
2.1 Animals 10
2.2 Xenobiotic 10
2.3 Preparation of Dose Forms 11
2.4 Dosing. 12
2.5 Collection of Biological Samples. 13
2.6 Analysis of Samples 14
2.6.1 Analysis of Biological Samples for Total Radio- activity 14
2.6.2 Analysis of Samples for $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde. 15
2.6.3 Analysis of Urine Sample by HPLC/MassSpectrometry15
2.7 Stability of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde in Stomach
Contents 16
2.8 In Vitro Metabolism of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde in Plasma. 17
2.9 Records 17
3.0 Results and Discussion. 18
3.1 In Vitro Experiments 18

Table of Contents (continued)

Page
3.2 In Vivo Studies 19
3.2.1 Dose Selection 19
3.2.2 Excretion of Crontonaldehyde and Its
Metabolites. 19
3.2.3 Distribution of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde and Its
Metabolites in Tissues 22
4.0 References. 24
Appendix 58

List of Figures

Pagetonaldehyde.27
4
12 Typical Radiochromatogram of 0.25 h Plasma From a Rat Following a $2.8 \mathrm{mg} / \mathrm{kg}$ Intravenous Dose of $\left[{ }^{14} \mathrm{C}\right]$ Cro- tonaldehyde 37
HPLC Purity Check of [${ }^{14} \mathrm{C}$]Crotonaldehyde 25
HPLC of Unlabeled Crotonaldehyde 26
3 Representative HPLC Purity Check of Purified [$\left.{ }^{14} \mathrm{C}\right]$ Cro-Typical HPLC Radiochromatogram of 0-72 h Urine Com-posite Following a $2.8 \mathrm{mg} / \mathrm{kg}$ Intravenous Dose of[${ }^{14} \mathrm{C}$]Crotonaldehyde.29
Typical HPLC Radiochromatogram of 0-72 h Urine Com- posite Following $33 \mathrm{mg} / \mathrm{kg}$ Oral Dose of $\left[{ }^{14} \mathrm{C}\right]$ Cro- tonaldehyde. 30
Structures of Urinary Metabolites of Crotonaldehyde and a Possible Mass Spectral Fragment 31
HPLC-Radiochromatogram of Urine Sample Used forCombined HPLC/MS Examination 32
Summation of Mass Spectral Scans 545-562 (Less Back-ground) From the HPLC/Mass Spectra of Rat Urine.33
Summation of Mass Spectral Scans 568-573 (Less Back-ground) From the HPLC/Mass Spectra of Rat Urine. . . 34
Single Ion Plots From the HPLC/Mass Spectra of Rat
Urine. 35

List of Tables

Page
1 Animal Data 38
2 Percentage of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde Remaining in Male
F344 Rat Stomach Contents/Normal Saline After
In Vitro Incubation at $37^{\circ} \mathrm{C}$ 40
3 In Vitro Reaction of [${ }^{14}$ C]Crotonaldehyde with Rat
Plasma 41
4 Recovery of Total Radioactivity After Administration of [${ }^{14}$ C]Crotonaldhyde to Male Fischer 344 Rats. 42
5 Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Oral Admin-
istration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male Fischer
344 Rats 43
6 Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male Fischer 344 Rats. 44
7 Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous
Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male
Fischer 344 Rats. 46
8 Amount of ${ }^{14} \mathrm{C}$-Labeled Compounds in Tissues 24 h After
Intravenous Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Fischer 344 Male Rats. 47
9 Concentration of ${ }^{14} \mathrm{C}$-Labeled Compounds in Tissues
72 h After Oral Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonal- 49

List of Tables (continued)

Page
1011 Amount of ${ }^{14} \mathrm{C}$-Labeled Compounds in Tissues 72 hAfter Oral Administration of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehydeto Fischer 344 Male Rats. 51
1213 Tissue Blood Ratios of ${ }^{14} \mathrm{C}$-Labeled Compounds in
Tissues After Intravenous Administration of 2.6 -
$2.9 \mathrm{mg} / \mathrm{kg}$ of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehydeto Fischer 344
Male Rats 54
14 Amount of ${ }^{14} \mathrm{C}$-Labeled Compound in Tissues After
Intravenous Administration of $2.6-2.9 \mathrm{mg} / \mathrm{kg}$ of [${ }^{14}$ C]Crotonaldehyde to Fischer 344 Male Rats. . . . 56

List of Participants

Study Director
Veterinarian
Chemist

Chemist
Chemist
Animal Technician

1.0 Introduction

Crotonaldehyde, 2-butenal, is an intermediate in the manufacture of crotonic and sorbic acids, n-butanol, n-butyraldehyde, resins, and rubber antioxidants. It is also used as a warning agent in fuel gases. Crotonaldehyde is an irritant of the eyes, mucous membranes and skin. Since this aldehyde is found in drinking water, cigarette smoke, and possibly smog, it is considered to have considerable potential for human exposure. Crotonaldehyde is a clear liquid that is soluble in water, THF, acetone, and ether but only slightly soluble in ethanol.

Crotonaldehyde is known to react rapidly with thiols, including glutathione (Boyland and Chasseand, 1967; Gray and Barnsley, 1971). The reaction with glutathione was reported to yield at least two major products. Two metabolites have been identified from rat urine as 3-hydroxy-l-methylpropylmercapturic acid and 2-carboxy-1-methylethylmercapturic acid (Gray and Barnsley, 1971).

2.0 Materials and Methods

2.1 Animals

Source: Adult male Fischer 344 (F344-M) rats were purchased from Charles River Breeders (Kingston, NY). The rats were examined for signs of disease or abnormality upon arrival and quarantined at least two weeks before they were used in a study. Animal weights at the time they were in studies are shown in Table 1.

Diet: Animals were fed Certified Purina Rat Chow and furnished water ad libitum. Prior to the oral dosing experiments, animals were fasted overnight.

Housing: Animals were transferred to individual glass metabolism chambers the day before they were used in an experiment. These chambers provided for separate collection of urine and feces and for trapping of ${ }^{14} \mathrm{C}$ in exhaled breath. Animals which were sacrificed $\leq 6 \mathrm{hr}$ after dosing were housed singly in polypropylene cages.

2.2 Xenobiotic

The ${ }^{14} \mathrm{C}$ labeled test compound, crotonaldehyde, was supplied by NIEHS. It had been prepared by Midwest Research Institute, Lot No. 83-127-16-30 and was supplied as an aqueous solution containing 4.74 mCi of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde. The stated concentration was $3.64 \mathrm{mCi} / \mathrm{mL}(1.58$ $\mathrm{mM} / \mathrm{mL}, 11 \% \mathrm{w} / \mathrm{v})$, with a specific activity of $2.31 \mathrm{mCi} / \mathrm{mmole}$. A copy of the data sheets is included as Figure Al in the Appendix of this report. Unlabeled crotonaldehyde was obtained from Aldrich Chemical Company, Lot No. 1217 PH , as an aqueous solution. Although Aldrich reports this to be a solution of 85% crotonaldehyde and 15% water, actual values were found to be 93% crotonaldehyde and 7% water by Karl Fischer water determination. The radiochemical purity of the $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde was
established by high performance liquid chromatography (HPLC) on a Waters Associates liquid chromatograph equipped with two Model 6000A pumps, a Model 720 solvent programmer, a Model U6K injector and a Model 773 Spectroflow (Kratos) ultraviolet detector operated at 223 nm . The HPLC column was a Du Pont Zorbax ODS ($0.46 \times 25 \mathrm{~cm}$) and the mobile phase consisted of mixtures of acetonitrile and water. A linear solvent gradient was run from 20:80 acetonitrile:water to $95: 5$ acetonitrile: water over 10 min . The mobile phase flow rate was $1.5 \mathrm{~mL} / \mathrm{min}$. Unlabeled crotonaldehyde, $1 \mu \mathrm{~g} / \mu \mathrm{L}$ in water, and $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde, 4.06×10^{2} $\mathrm{DPM} / \mu \mathrm{L}$ water, were chromatographed. Following the injection of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde, column effluent was collected in fractions and the ${ }^{14} \mathrm{C}$ eluting in each fraction was measured by liquid scintillation spectrometry. The radiochemical purity of the $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde was ca. 83% (Figure 1). Unlabeled crotonaldehyde appeared essentially pure by HPLC analysis (Figure 2).

2.3 Preparation of Dose Forms

Purification of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde. Before dose preparation, the $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde was purified by HPLC. A Du Pont Zorbax ODS (0.46 x $25 \mathrm{~cm})$ HPLC column with a Bondapak Corasil C_{18} pre-column was employed. The mobile phase was a $10 \%(v / v)$ mixture of ethanol in water at a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$. After an injection of ca. 0.7 mg of impure $\left[{ }^{14} \mathrm{C}\right] \mathrm{cro-}$ tonaldehyde was made, the fraction eluting from the HPLC column which contained $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde was collected in an argon purged vial. The purity of this fraction was checked by HPLC with the HPLC system used for purification. of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde. Column effluent was collected in fractions and the ${ }^{14} \mathrm{C}$ in each fraction was measured by liquid scintillation spectrometry. If further purification was necessary
the process was repeated. The radiochemical purity of the purified $\left[{ }^{14}\right.$ C]crotonaldehyde used for all studies was $\geq 96 \%$ (Figure 3).

2.4 Dosing

Oral doses were administered by gavage into the stomach. Animals were dosed at the following dose levels: $35,3.1$ and 0.67 mg of $\left[{ }^{14} \mathrm{C}\right] \mathrm{cro-}$ tonaldehyde per kg body weight. Rats were fasted overnight prior to oral dosing.

Intravenous doses were administered in one of the lateral tail veins. Each dose consisted of ca. 1 mL of 10% ethanol in water (with the exception of 4 animals which were administered the dose in 2% aqueous ethanol containing $2.6-2.9 \mathrm{mg}\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde $/ \mathrm{kg}$ body weight. Except for 8 animals (rats $151-1$ to $151-4$ and $152-1$ to $152-4$), rats were dosed in closed metabolism chambers in order to trap rapidly expired ${ }^{14} \mathrm{CO}_{2}$. Doses were injected into veins in the tails, which were exteriorized through small openings in the sides of the chambers. After the dose was administered the rats were allowed to draw their tails into the chambers and the opening quickly sealed.

Oral Doses. The specific activity of the $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde was adjusted by combining appropriate amounts of unlabeled crotonaldehyde with purified [$\left.{ }^{14} \mathrm{C}\right]$ crotonaldehyde (in the HPLC mobile phase consisting of $10 \% \mathrm{EtOH}$ in $\mathrm{H}_{2} \mathrm{O}$) so that the correct amount of crotonaldehyde for dosing was contained in ca. 1 mL of the dose formulation. Oral doses were prepared in argon-purged vials sealed with teflon-faced silicone septum caps and wrapped with aluminum foil. Dosing solutions were administered within 2 h of their preparation. Each dose was drawn into a lmL Plastipak disposable syringe fitted with a dry gavage needle. The filled syringe was then weighed. After dosing, the needle was
wiped free of mucus and the empty syringe and needle reweighed. Each dose was calculated as the difference between the weights of the filled and empty dosing apparatus. An aliquot of the dose formulation was removed after each 1 mL dose was administered in order to determine the amount of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde in each dose. This was necessary because of the volatility of crotonaldehyde. The purity of the dosing solution was assayed by HPLC after all the animals had been dosed.

Intravenous Doses. Intravenous dose formulations were prepared as described for the oral dose formulations. One group of rats however, rats 4188-152-1 thru 4 , was administered the dose in 2% ethanol in water rather than 10% ethanol. This dose formulation was prepared by diluting the mobile phase containing the purified $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde with 4 volumes of distilled water. Unlabeled crotonaldehyde was then added to give a dosing formulation containing ca. 1.1 mg crotonaldehyde/mL.

2.5 Collection of Biological Samples

Urine and feces were collected separately over the time intervals listed in Tables 5 and 6. Urine was collected in round-bottom flasks over dry ice. Feces were collected in tail cups secured to the rats with surgical adhesive. Urine and feces were stored in the dark at $-20^{\circ} \mathrm{C}$ until analyzed.

Breath was collected by two different trapping methods. In Method A, which trapped volatile organics and CO_{2}, air was pulled through the metabolism cages at $200-500 \mathrm{~mL} / \mathrm{min}$ and then through a series of 3 traps. The first contained ca. 75 mL of 95% ethanol in water maintained in ice water. The second contained ca. 75 mL of 1% crotonaldehyde in 2-propanol (v/v) maintained in a dry ice-acetone bath. The third trap contained 400 mL of 1 N sodium hydroxide maintained at ambient temperature.

In Method B, which trapped ${ }^{14} \mathrm{CO}_{2}$ only, air was pulled through the metabolism cage at $200-500 \mathrm{~mL} / \mathrm{min}$ and then through a series of two traps, each containing 400 mL of 1 N sodium hydroxide maintained at ambient temperature. The traps were changed over the time intervals listed in Tables 5 and 6. Breath trap solutions were stored at room temperature until analyzed.

At the end of each experiment, the animal was anesthetized with an i.p. injection of $60 \mathrm{mg} / \mathrm{kg}$ ketamine and $8.6 \mathrm{mg} / \mathrm{kg}$ xylazine. Blood was then withdrawn by cardiac puncture until death occurred. Tissue samples were collected and stored in the dark at $-20^{\circ} \mathrm{C}$ until analyzed.

2.6 Analysis of Samples

2.6.1 Analysis of Biological Samples for Total Radioactivity

Duplicate aliquots of urine and trapping solution from the breath traps were added to 10 mL of scintillation cocktail [toluene:Triton X 100 (2:1) containing 6 g of Omnifluor (New England Nuclear) per liter]. Water or methanol was added as needed to obtain homogenous samples. Feces and livers were homogenized with a Brinkmann Polytron homogenizer. Aliquots of the homogenized feces and livers as well as blood, entire small tissues, and portions of muscle, skin and adipose tissues were burned in a Packard Model 306 sample oxidizer. The resulting CO_{2} was trapped in Carbo-Sorb to which Permafluor V scintillation cocktail (both from Packard Instruments) was added. Where possible, analyses for each animal were performed in duplicate.

Samples containing Carbo-Sorb or sodium hydroxide were stored overnight in the dark. All samples were then analyzed for ${ }^{14} \mathrm{C}$ in a Packard Model $460 C$ or 3255 scintillation spectrophotometer. Correction for differing amount of quench was performed by the external standard method.

The scintillation spectrometers were checked at least monthly for counting efficiencies and changes in the standard curves for quench correction. The sample oxidizer was checked for efficiency of recovery daily. It was maintained so that efficiencies for standards were $\mathbf{> 9 7 \%}$.

2.6.2 Analysis for Samples for [$\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde

Filtered aliquots of urine and plasma were analyzed directly by HPLC using a Du Pont Zorbax ODS ($0.46 \times 25 \mathrm{~cm}$) column and a mobile phase of 5:95 EtOH:0.05 M NH $\mathrm{NaAc}^{\mathrm{OAC}}(\mathrm{v}: \mathrm{v})$, pH 3.5. The mobile phase flow rate was $1 \mathrm{~mL} / \mathrm{min}$. Column effluent was collected in fractions and the ${ }^{14} \mathrm{C}$ eluting in each fraction was measured by scintillation spectrometry.

Skin, adipose, muscle and liver were extracted at $0^{\circ} \mathrm{C}$ with 50% ethanol in water. The tissue-ethanol mixtures were homogenized with a Brinkmann Polytron homogenizer and then centrifuged at 1600 x g for 5 \min. The supernatants were filtered through a $0.2 \mu \mathrm{~m}$ membrane before injection onto the HPLC. A Du Pont Zorbax ODS column was used with a mobile phase consisting of mixtures of ethanol and water. The concentration of ethanol remained constant at 30% for 7.5 minutes following injection and then changed from 30% to 90% over a 1.5 minute gradient. The mobile phase flow rate was $1 \mathrm{~mL} / \mathrm{min}$. Column effluent was collected in fractions and analyzed by scintillation spectrometry.

Residues from tissue extraction were oxidized in a Packard 306 oxidizer for total ${ }^{14} \mathrm{C}$ by the same method described in Section 2.6.1.

2.6.3 Analysis of Urine Sample by HPLC/Mass Spectrometry

The 2 - 6 h urine sample from rat 4275-130-4 (cf Table A8) was selected for analysis.. This rat had been given a $2.8 \mathrm{mg} / \mathrm{kg}$ intravenous dose of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde. The $2-6 \mathrm{~h}$ urine sample contained 42% of the administered ${ }^{14} \mathrm{C}$.

An 8.0 mL aliquot of urine was lyophilized. Methanol was added to the residue and, after vigorous mixing, the suspension was centrifuged. The methanolic extract was concentrated to ca. $100 \mu \mathrm{~L}$ and recentrifuged. Aliquots of the methanolic solution were then analyzed by radio-HPLC and by HPLC/mass spectrometry. The chromatographic system was identical to that described in section 2.6.2 except that methanol was used in the mobile phase in place of ethanol.
2.7 Stability of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde in Stomach Contents

A male F344 rat was sacrificed by decapitation and its stomach excised. Stomach contents were removed and a 20% (w/w) homogenate was prepared by adding the appropriate amount of normal saline and homogenizing the resultant mixture. The homogenate was placed in a $37^{\circ} \mathrm{C}$ shaker bath and allowed to equilibrate for 5 min , then spiked with a 0.809 mg / g solution of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde in 10% ethanol in water.

The amount of crotonaldehyde in the spike was equivalent to a 1.8 $\mathrm{mg} / \mathrm{kg}$ body weight dose. At $5,30,60$ and $120 \mathrm{~min}, 1.0 \mathrm{~mL}$ aliquots of the homogenate were removed. Aliquots were centrifuged at 1600 x g for 5 min. The supernatant was then passed through a $0.2 \mu \mathrm{~m}$ filter. Particulate matter remaining was oxidized in a Packard 306 oxidizer as described in Section 2.6.1. Aliquots of the filtrate were assayed for total ${ }^{14} \mathrm{C}$ by scintillation spectroscopy. Additional aliquots were assayed for $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde by HPLC. Radioactivity in the column effluent was monitored with a Berthold Model LB503 radioactivity detector. In addition, fractions of column effluent were collected from the 2 h sample and assayed for ${ }^{14} \mathrm{C}$ by scintillation spectrometry.
2.8 In Vitro Metabolism of $\left[{ }^{14}\right.$ C]Crotonaldehyde in Plasma

Blood was obtained from male F 344 rats by cardiac puncture and centrifuged at 1600 x g for 20 min to obtain plasma. One mL of plasma was pipetted into a silanized $1 / 2$ dram vial and sealed with a teflonfaced septum cap. The vial was placed in a $37^{\circ} \mathrm{C}$ shaker bath and allowed to equilibrate for 5 min . Then a $100 \mu \mathrm{~L}$ aliquot of purified crotonaldehyde in 10% ethanol in water was delivered to the vial to give an incubation mixture containing $7.33 \mu \mathrm{~g}$ crotonaldehyde/g of mixture. Aliquots of plasma were taken at 5 minutes, $0.5,1,2,4$, and 20 h and injected directly onto the HPLC column. Column effluent was collected in fractions and assayed for ${ }^{14} \mathrm{C}$ by scintillation spectrometry. The percentage of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde remaining in the plasma aliquot was calculated by multiplying the percentage of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde which eluted from the HPLC by the total percentage of ${ }^{14} \mathrm{C}$ which was recovered from the chromatography.

2.9 Records

Until the remaining studies in this contract are completed, the records for this study will be kept in the office or laboratory office of the Study Director. After this time, the records will be stored in the Research Triangle Institute Chemistry and Life Sciences Archives. These records will be stored under the project number for this study (311U-2227). The records will be kept for a minimum of 10 years following the completion of the study.

3.0 Results and Discussion

3.1 In Vitro Experiments

Crotonaldehyde was only slightly degraded by stomach contents. After a 5 min incubation of homogenized stomach contents ($20 \% \mathrm{w} / \mathrm{v}$ in normal saline) containing [${ }^{14} \mathrm{C}$]crotonaldehyde in an amount corresponding to a dose of $1.8 \mathrm{mg} / \mathrm{kg}, 96 \%$ remained as unreacted crotonaldehyde. After $2 \mathrm{~h}, 94 \%$ remained as crotonaldehyde, 1% of the ${ }^{14} \mathrm{C}$ was converted to a more polar compound and 5% of the ${ }^{14} \mathrm{C}$ was bound to the particulate matter (Table 2). Therefore, it is likely that the material being absorbed from the gut was almost entirely crotonaldehyde.

Although crotonaldehyde was fairly stable to stomach contents, it was not stable to plasma enzymes. After only a 5 min incubation of crotonaldehyde with rat plasma at $37^{\circ} \mathrm{C}$, less than half of the initial ${ }^{14} \mathrm{C}$ was accounted for by the parent compound (Table 3, Figure 4). By the end of 30 min , the amount of parent crotonaldehyde had decreased to 15% of the initial value. The percentage of parent compound remaining in the incubator mixture then slowly decreased to 8% of the initial value as the incubation time was increased to 20 h . This rapid initial reaction of crotonaldehyde followed by a much slower rate of reaction is consistent with either the depletion of the substrate(s) with which crotonaldehyde is reacting or the deactivation of the enzyme(s) mediating the reaction. If either process is occurring, then reaction of crotonaldehyde in a dynamic in vivo situation would be expected to be even more rapid and to go to completion (i.e., no unreacted crotonaldehyde remaining).

3.2 In Vivo Studies

3.2.1 Dose Selection

Oral doses were administered at rates of $35,3.3$ and $0.67 \mathrm{mg} / \mathrm{kg}$. The highest dose was approximately 0.1 times the LD_{50} (Smyth and Carpenter, 1944). Intravenous doses were administered at $2.8 \mathrm{mg} / \mathrm{kg}$. This dose produced mild, but observable, short term discomfort in some of the animals. Higher intravenous dose levels were thus not attempted.

Purified [${ }^{14}$ C]crotonaldehyde was available as a solution in 1:9 ethanol:water. Due to the low concentration of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde in this solution, its volatility and its instability, we were not able to separate the crotonaldehyde from the solvent. The solvent mixture was thus used as part of the dose vehicle. In order to determine whether the ethanol in this solvent mixture had an effect on the metabolism of crotonaldehyde (for example, by overloading the alcohol/aldehyde dehydrogenase enzymes), a study was conducted which compared the metabolism of crotonaldehyde injected intravenously in 10% ethanol with that injected in 2% ethanol. The results of this study (cf Tables 7 and 8) show that there is no difference in the metabolism of crotonaldehyde due to the increased amount of ethanol.

3.2.2 Excretion of Crotonaldehyde and Its Metabolites

The average cumulative excretions of total ${ }^{14} \mathrm{C}$ in urine, feces, and breath following administration of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde are shown in Tables 4-7. Breath and urine were the major routes of excretion of ${ }^{14} \mathrm{C}$ following oral or intravenous administration. After a $2.8 \mathrm{mg} / \mathrm{kg}$ intravenous dose, an average of 48% of the dose was excreted in urine, 41% in breath as CO_{2}, and 0.3% in feces in $72 \mathrm{~h}(\mathrm{~N}=3)$. An average of 37% of a $2.6-2.9 \mathrm{mg} / \mathrm{kg}$ IV dose was excreted in urine and 31% in breath as CO_{2} in $6 \mathrm{~h}(\mathrm{~N}=13)$.

In oral studies at doses of $0.67,3.3$ and $35 \mathrm{mg} / \mathrm{kg}$ of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde, $38-39 \%$ of the dose was excreted in urine, $44-49 \%$ in breath as CO_{2} and $6-7 \%$ in feces in 72 h . There was no change in excretion pattern over this dose range. The amount of ${ }^{14} \mathrm{C}$ excreted in feces is equivalent to the amount not absorbed into the systemic circulation since virtually no ${ }^{14} \mathrm{C}$ was excreted in feces after intravenous doses of [$\left.{ }^{14} \mathrm{C}\right]$ crotonaldehyde. Thus the amount of $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde that was absorbed from oral doses was $\geq 93 \%$ in all studies. The percent dose excreted in feces ($6-7 \%$) was consistent with the small percentage of the ${ }^{14} \mathrm{C}$ in the in vitro study that was bound to the stomach contents.

HPLC analysis of the combined $0-72 \mathrm{~h}$ urine samples showed that essentially no unmetabolized crotonaldehyde was excreted in urine. This result is consistent with the rapid reaction of crotonaldehyde observed in vitro in plasma. The rapid excretion of the metabolites in urine (and as CO_{2} in breath) makes it unlikely that a significant amount of crotonaldehyde was covalently bonded to macromolecules.

Typical HPLC radiochromatograms of the combined urines are shown in Figures 5 (intravenous dose) and 6 (oral dose). Two incompletely resolved peaks of radioactivity which account for $65-80 \%$ of the total ${ }^{14} \mathrm{C}$ are present in each chromatogram. The materials in these peaks are less retained on the reverse phase column than either crotonaldehyde or crotonic acid (and are therefore probably more polar than these standards). Lesser amounts of several even more polar metabolites are also present. The excretion of ${ }^{14} \mathrm{C}$ in the form of quite polar metabolites of crotonaldehyde supports the findings of Gray and Barnsley (1971), who identified 3-hydroxy-l-methylpropylmercapturic acid (Compound 1, Figure 7) and 2-carboxy-l-methylethylmercapturic acid (Compound 2, Figure 7) as urinary metabolites of crotonaldehyde in rats.

Combined HPLC/mass spectral analysis (thermospray inlet system) was performed on a sample of rat urine in order to better define the nature of the major urinary metabolites. The urine sample selected for this analysis (rat 4275-130-4; cf Table A8) contained 42% of the dose of ${ }^{14} \mathrm{C}$ and had a metabolite profile (Figure 8) similar to those observed for the $0-72 \mathrm{~h}$ combined urines for the other animals. Mass spectra of the column effluent obtained at times corresponding to the retention times of the two major urinary metabolites are shown in Figures 9 and 10, respectively. Both spectra contain prominant signals at $\mathrm{m} / \mathrm{z} 236$, which corresponds to the molecular ion $+\mathrm{H}^{+}$of 3-hydroxy-l-methylpropylmercapturic acid and at $m / z 253$, which corresponds to the molecular ion $+\mathrm{NH}_{4}{ }^{+}$of the same compound. Signals arising from molecular ions $+\mathrm{H}^{+}$ and $+\mathrm{NH}_{4}{ }^{+}$would be expected since the HPLC mobile phase contained $\mathrm{NH}_{4} \mathrm{OAc}$ as a buffer. Signals at $\mathrm{m} / \mathrm{z} 133$ and 150 are also seen in these spectra, which could be attributed to the fragment ion $\underline{3}$ and $\underline{3}+\mathrm{NH}_{3}$ (Figure 7; Milne et al, 1970). Single ion plots of m/z 236 and 253 (Figure 11) show that the intensities of these ions rise and fall at times corresponding to those for the elution of the major crotonaldehyde metabolites. Single ion plots of the $\mathrm{m} / \mathrm{z} 133$ and 150 ions (Figure 11) show that the intensities of these ions are correlated somewhat with the elution times of the major metabolites but with profiles that are not as closely matched to the metabolite elution times as those of the ions at m/z 236 and 253.

The presence of two metabolite peaks with protonated molecular ions at $\mathrm{m} / \mathrm{z} 236$ could be dụe to one of at least 3 different possibilities:
(1) Reaction of crotonaldehyde with glutathione occurs in a nonstereospecific manner, giving rise to diastereomers. These diastereomers
would then be degraded to a pair of diasteromers of 1 , which could be separated by HPLC. (2) Reaction of crotonaldehyde with glutathione could result in attachment of the sulfur to C_{1} of the crotonaldehyde in addition to C_{3} as in the metabolites shown in Figure 7 to form a positional isomer of 1 . (3) This ion at $\mathrm{m} / \mathrm{z} 236$ is not the protonated molecular ion of (at least) one of the metabolites, but is a fragment ion of the molecular ion (the latter not being observed). While the formation of separable diastereomers seems to be the most likely of these possibilities, additional work would be required to conclusively identify the major urinary metabolites of crotonaldehyde from our study.

Excretion of ${ }^{14} \mathrm{C}$ in breath was essentially entirely as ${ }^{14} \mathrm{CO}_{2}$. The very small amounts ($<1.5 \%$ of dose) of ${ }^{14} \mathrm{C}$ trapped in the cryogenic (organic vapors) trap may also be ${ }^{14} \mathrm{CO}_{2}$ dissolved in the 2-propanol trapping solution.
3.2.3 Distribution of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde and Its Metabolites in Tissues
Concentrations of ${ }^{14} \mathrm{C}$-labeled compounds in tussies after oral and intravenous administration of [${ }^{14}$ C]crotonaldehyde are shown in Tables 914. Over the time period examined following intravenous dosing (0.25 72 h) the concentration of ${ }^{14} \mathrm{C}$ in skin, muscle, adipose and liver never exceeded that in blood. As would be expected for a relatively polar, water soluble compound, concentrations of ${ }^{14} \mathrm{C}$ in adipose were low, rising to only ca. one-fourth of that in blood at the long time points. Concentrations of ${ }^{14} \mathrm{C}$ in trachea, lungs and adrenals exceeded that in blood for at least two.time points, but these concentrations never rose to more than 1.6 times that in blood. Elimination of ${ }^{14} \mathrm{C}$ from blood and tissues was rapid initially, with half-lives of ca. 1 h or less. This
was followed by much slower elimination of the last ca. 10% of the dose, which occurred with half-lives of 2.5 days or longer.

The percent of oral doses in tissues 72 h after dosing was essentially the same for doses of 35 and $0.67 \mathrm{mg} / \mathrm{kg}$, except for the stomach (which contained 0.2% and 0.8% of these doses, respectively). Tissue-blood ratios (TBR) were somewhat higher in these studies than they were after intravenous administration of the $\left[{ }^{14} \mathrm{C}\right]$ crotonaldehyde. Tissues with TBR values between 1.0 and 2.0 included skin, intestines, seminal vesicles, prostate, lungs, spleen, kidney and heart. Higher TBR values were observed in the adrenals (3.4 and 4.6), trachea (2.0 and 2.3), stomach (3.9 and 14), esophagus (3.0 and 4.4), and liver (2.9 and 7.1).

The amount of unmetabolized crotonaldehyde was determined in plasma, skin, muscle, adipose and liver 0.25 h after intravenous dosing. A typical HPLC radiochromatogram of plasma is shown in Figure 12. In all cases, essentially no crotonaldehyde was found ($\leq 1 \%$ of the ${ }^{14}$ C present in the tissue eluted from the HPLC column with the same retention time as crotonaldehyde).

4.0 References

E. Boyland and L. F. Chasseand, Biochem. J., 10495 (1970).
J. M. Gray and E. A. Barnsley, Xenobiotica 1, 55 (1971).
G. W. A. Milne, T. Axenrod and H. M. Fales, J. Am. Chem. Soc., 92, 5170 (1970).

Figure 1. HPLC Purity Check of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde (MRI Lot No. 83-127-16-30)

Chromatographic Conditions:

Column Mobile Phase	- 0.46 x 25 cm Dupont Zorbax ODS - (A) 20:80 Acetonitrile:Water (v / v) (B) $95: 5$ Acetonitrile:Water (v / v)
Solvent Program	- 0\%B to $100 \% \mathrm{~B}$ in 10 min over a linear gradient
Flow Rate	- $1.5 \mathrm{~mL} / \mathrm{min}$
Fraction Interva	1 minute
R_{t} of Crotonalde	de $=5.4 \mathrm{~min}($ fraction 6)

Figure 2. HPLC of Unlabeled Crotonaldehyde (Aldrich, Lot No. 1217PH)

Chromatographic Conditions:
Column $\quad-0.46 \times 25 \mathrm{~cm}$ Dupont Zorbax ODS
Mobile Phase - (A) 20:80 Acetonitrile:Water (v/v)
(B) $95: 5$ Acetonitrile:Water (v/v)

Solvent Program - $0 \% \mathrm{~B}$ to $100 \% \mathrm{~B}$ in 10 min over a linear gradient Flow Rate - $1.5 \mathrm{~mL} / \mathrm{min}$
R_{t} of Crotonaldehyde $=5.4 \mathrm{~min}$

1

Figure 3. Representative HPLC Purity Check of Purified [${ }^{14} \mathrm{C}$]Crotonaldehyde

HPLC Conditions:

Column	$-0.46 \times 25 \mathrm{~cm}$ Dupont Zorbax ODS
Mobile Phase	$-10: 90$ Ethanol:Water (v/v)
Solvent Program	- Isocratic
Flow Rate	$-1.5 \mathrm{~mL} / \mathrm{min}$
Fraction Interval -1 min	
R_{t} of Crotonaldehyde $=9.5 \mathrm{~min}$ (fraction 10$)$	

Figure 4. Radioçhromatograms of Plasma after In Vitro Metabolism of [${ }^{14}$ C]Crotonaldehyde

```
HPLC Conditions:
Column - 0.46 x 25 cm Dupont Zorbax
Mobile Phase - 5:95 EtOH:0.05 M NH4 OAc at pH 3.5
Solvent Program - Isocratic
Flow Rate - }1.5\textrm{mL}/\textrm{min
Fraction Interval - l min
Rt
```


C. 2 hour incubation

D. 20 hour incubation

$$
\text { DPM SUMMATION }=\quad 1691.1
$$

$\underset{x}{\text { CLM }} \underset{x}{x}$ VIAL FRACTIDN $\quad x$ TOTAL RADIOACTIVITY

Figure 5. Typical HPLC Radiochromatogram of $0-72 \mathrm{~h}$ Urine Composite Following a $2.8 \mathrm{mg} / \mathrm{kg}$ Intravenous Dose of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde

```
HPLC Conditions:
\begin{tabular}{|c|c|}
\hline olumn & x 25 cm Dupont Zo \\
\hline Mobile Phase & - 5:95 EtOH:0.05 \(\mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}\) at pH 3.5 \\
\hline Solvent Program & - Isocratic - 4 - \\
\hline Flow Rate & \(1 \mathrm{~mL} / \mathrm{min}\) \\
\hline Fraction Inte & - 1 min (fractions 9-28 collected over 0.2 min intervals) \\
\hline \(R_{t}\) of Crotonalde & \[
\mathrm{de}=18.4 \mathrm{~min}(\text { fractions } 34 \& 35)
\] \\
\hline
\end{tabular}
```

```
        DFM SLMMMATION = 5509.5
```

 \(\begin{array}{cccc}\text { CUM } & \text { FFAC. VIAL FFIACTION } \\ \% & \% & \# & \#\end{array}\)
 \% TOTAL RADIOACTIVITY

Figure 6．Typical HPLC Radiochromatogram of 0－72 h Urine Composite Following $33 \mathrm{mg} / \mathrm{kg}$ Oral Dose of ［ ${ }^{14}$ C］Crotonaldehyde

HPLC Conditions：

Column	$-0.46 \times 25 \mathrm{~cm}$ Dupont Zorbax ODS
Mobile Phase	$-5: 95 \mathrm{EtOH}: 0.05 \mathrm{M}_{4} \mathrm{OAc}$ at pH 3.5
Solvent Program	- Isocratic
Flow Rate	$-1 \mathrm{~mL} / \mathrm{min}$
Fraction Interval	-1 min （fractions $9-28$ collected
	\quad over 0.2 min intervals）
R_{t} of Crotonaldehyde $=18.6 \mathrm{~min}$（fractions $34 \& 35$ ）	
Recovery of ${ }^{14} \mathrm{C}-99 \%$	

DF．M SUMMATIDN＝				25968.1					
Cum	friac．	VIAL	FRACTION		\％	TOT	OAC		
z	\％	＊	\＃	5		10	15	20	25

C． 0	0.00	137	1	，	
0.0	0.00	$1 こ 4$	2	，	
15.1	15.09	135	3		
20.0	4.94	136	4	：＊＊＊＊＊＊＊＊＊＊	
20.9	． 84	$1 こ 7$	5	：＊＊	
21.4	． 52	1 1－6	6	：	
21.7	． 26	139	7	：${ }^{\text {\％}}$	
21．9	．$=1$	140	8	：	
ここ． 5	－6＝	141	9	：＊	
26.0	－． 5	142	10	：＊＊＊＊＊＊＊	
29．7	$\bigcirc .71$	143	11	（＊＊＊＊＊＊＊	
31．1	1.44	144	12	；＊＊＊	
31.8	－¢＝	145	13	：＊	
32.5	． 75	146	14	；＊＊	
38.9	6.42	147	15		
49.1	10.15	14 B	16	（\＃\＃\＃＊＊＊＊＊＊＊＊\＃\＃\＃\＃\＃\＃\＃\＃\＃	
58.2	$9.1 t$	149	17		
74.5	16．25	150	18	（\＃\＃\＃\＃\＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊	－
E？． 3	12.79	151	19		
9゙，	5.93	152	20	；＊＊＊＊＊＊＊＊＊＊＊＊	
95． 8	2.59	153	21		
96.9	1.68	157	22	－${ }_{\text {＊}}$	
97.5	． 62	155	ご	！	
97.9	． 3.6	$15 t$	24	：	
98.2	． 70	157	こち	：	
98.4	．こき	158	26	！	
98.6	． 16	159	27	：	
98.7	． 15	160	2日	：	
99．2	． $4 t$	161	29	；	
99.4	． 26	162	ご0	；	
99.6	． 16	163	$\because 1$	；	
99.7	.09	164	ご	i	
99.7	． 67	165	ご	！	
99.8	0	166	34	：	
99.8	． 04	167	35	；	
99.9	． 07	168	36	：	
99.9	． 04	169	37	－	
100.0	． 017	170	38	：	
				；	
				51015	

Figure 7. Structures of Urinary Metabolites of Crotonaldehyde and a Possible Mass Spectral Fragment

3-hydroxy-1-methypropylmercapturic acid $(M W=235)$

1

3

2-carboxy-1-methylethylmercapturic
acid (MW $=249$)
$\underline{2}$

Figure 8. HPLC-Radiochromatogram of Urine Sample Used for Combined HPLC/MS Examination

HPLC Conditions:

Column	$-0.46 \times 25 \mathrm{~cm}$ Dupont Zorbax oDS
Mobile Phase	$-5: 95 \mathrm{Methanol:0.05} \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}$ at pH 3.5
Solvent Program	- Isocratic
Flow Rate	$-1 \mathrm{~mL} / \mathrm{min}$

MS			DPM SLmmation =		77027.9					
TIME	SCAN	cum	frac.	FRACTION		\%		-		
(MIN)	\#	\%	\%	*	2		4	6		10

Figure 9. Summation of Mass Spectral Scans 545-562 (Less Background) From the HPLC/Mass Spectra of Rat Urine

Figure 10. Summation of Mass Spectral Scans 568-573 (Less Background) From the HPLC/Mass Spectra of Rat Urine

Figure 11. Single Ion Plots From the HPLC/Mass Spectra of Rat Urine.

326.
236.071 0.506 173. 253.076 0.500 61.
250.075 0.500
60.
264.079
$\pm \quad 0.500$

SCAN
TIME

Figure 12. Typical Radiochromatogram of 0.25 h Plasma From a Rat Following a $2.8 \mathrm{mg} / \mathrm{kg}$ Intravenous Dose of [${ }^{14} \mathrm{C}$]Crotonaldehyde

```
HPLC Conditions:
```

Column	$-0.46 \times 25 \mathrm{~cm}$ Dupont Zorbax ODS
Mobile Phase	$-1: 9 \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$
Solvent Program	- Isocratic
Flow Rate	$-1.0 \mathrm{~mL} / \mathrm{min}$
Fraction Interval -1 min	
R_{t} of Crotonaldehyde $=18.6 \mathrm{~min}$ (fraction 19)	

 DPM SUMMATION = 524.2
 $\begin{array}{cccc}\text { CUM } & \text { FRAC. VIAL } & \text { FRACTION } \\ \% & \% & \# & \%\end{array}$
\% total fadioactivity

Table 1

Animal Data

Rat No.	Route	$\begin{aligned} & \text { Weight } \\ & \text { of } \\ & \operatorname{Rat}(g) \end{aligned}$	$\begin{aligned} & \text { Dose } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	Time of Sacrifice
4188-77-1	Oral	272	39.1	72 h
4188-77-2**		248	33.8	72 h
4188-77-3*		268	36.3	
4188-77-4*		269	32.2	
4188-121-1	Oral	280	3.55	72 h
4188-121-2		286	3.20	
4188-121-3		282	3.13	
4188-121-4		291	3.38	
4188-121-5*	Oral	281	0.715	72 h
4188-121-6*		281	0.663	
4188-121-7\%		272	0.638	
4188-121-8		282	0.671	
4275-87-1*	IV	328	2.88	0.25 h
4275-87-2*		325	2.84	
4275-87-3*		330	2.88	
4275-87-4		353	2.72	
4440-152-1	$I V^{\text {b }}$	291	2.69	0.25 h
4440-152-2		259	2.92	
4440-152-3		293	2.66	
4275-81-1*	IV	334	2.91	0.75 h
4275-81-2		311	2.84	0.75 h
4275-81-3*		335	2.74	
4275-81-4*		309	2.89	
4275-57-2*	IV	317	2.91	2 h
4275-57-3*		307	2.99	2 h
4275-57-4*		300	2.88	
4188-178-1*	IV	219	2.62	6 h
4188-178-2*		277	2.57	
4188-178-3*	-	250	2.60	
4188-178-4		274	2.70	
4188-151-1*	IV	236	2.74	24 h
4188-151-2		229	2.85	
4188-151-3*		232	2.84	
4188-151-4*		233	2.81	
(continued)				

Table 1 (continued)

Animal Data

Rat No.	Route	$\begin{aligned} & \text { Weight } \\ & \text { of } \\ & \operatorname{Rat}(\mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Dose } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	Time of Sacrifice
4188-152-1	IV ${ }^{\text {c }}$	217	3.00	24 h
4188-152-2*		230	2.89	
4188-152-3*		232	2.80	
4188-152-4*		229	2.84	
4275-40-1*	IV	299	2.69	72 h
4275-40-3**		332	2.80	
4275-40-4*		307	2.91	
4275-130-1	IV	239	2.92	72 h
4275-130-2		246	2.76	
4275-130-4		241	2.56	

[^0]Table 2. Percentage of [${ }^{14} \mathrm{C}$]Crotonaldehyde Remaining in Male F344 Rat Stomach Contents/Normal Saline After In Vitro Incubation at $37^{\circ} \mathrm{C}$

Incubation Time	Percent14 C Remaining in Filtrate (as Crotonaldehyde) 5 min 30 min	Percent ${ }^{14} \mathrm{C}$ Bound to Particulate Matter
1 h	96	4
2 h	96	4

Table 3. In Vitro Reaction of [$\left.{ }_{a}^{14} \mathrm{C}\right]$ Crotonaldehyde with Rat Plasma ${ }^{\text {a }}$

Time After Addition of [${ }^{14}$ C]Crotonaldehyde	Percent of Injected ${ }^{14} \mathrm{C}$ That Eluted From HPLC Column	Percent of [${ }^{14} \mathrm{C}$]Crotonaldehyde in Column Eluent	Percent of [${ }^{14} \mathrm{C}$]Crotonaldehyde That Has Not ${ }_{b}$ Been Degraded ${ }^{\text {b }}$
0 min	97	99	(100)
5 min	45	89	42
30 min	22	66	15
1 h	21	57	12
2 h	22	46	11
4 h	30	32	10
20 h	31	24	8

${ }^{\text {a }}$ Initial $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde concentration was $7.3 \mu \mathrm{~g} / \mathrm{mL}$.
${ }^{b}$ Corrected for recovery of initial $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde sample.

Table 4
Recopery of Total Radioactivity After Administration of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male
Fischer 344 Rats (\% Dose) ${ }^{\text {a }}$

Time (h)	Route	$\begin{aligned} & \text { Dose } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	Urine	$\begin{aligned} & \text { Breath } \\ & \mathrm{CO}_{2} \end{aligned}$	Breath Volatiles	Feces	Major Selected Tissues \& Blood ${ }^{\text {b }}$ c	Total
0.25	IV	2.8	$N / A^{\text {d }}$	N/A		N/A	55 ± 1	
0.75	IV	2.8	N/A	N/A		N/A	37 ± 3	
2	IV	2.8	N/A	N/A		N/A	18 ± 0.3	
6	IV	2.6	39 ± 5	35 ± 6	1.3 ± 0.8	N/A	10 ± 0.5	82 ± 4
24	IV	2.8	50 ± 9	34 ± 7		0.55 ± 0.25	7.4 ± 0.4	90 ± 4
$24^{\text {e }}$	IV	2.9	45 ± 5	36 ± 1		0.5 ± 0.1	8.7 ± 0.9	88 ± 4
72	IV	2.8	$(39 \pm 6)^{\text {f }}$	43 ± 4		N/A	4.8 ± 0.5	$(88 \pm 4)^{\text {f }}$
72	IV	2.8	48 ± 7	41 ± 2		0.27 ± 0.12	N/A	
72	Oral	0.67	$39 \pm 4^{\text {b }}$	47 ± 5^{b}		$6.6 \pm 0.9^{\text {b }}$	6.2 ± 0.7	$99 \pm 8^{\text {b }}$
72	Oral	3.3	$34 \pm 2^{\text {b }}$	$49 \pm 7^{\text {b }}$		$5.6 \pm 3.8{ }^{\text {b }}$	N/A	
72	Oral	35	38 ± 3	44 ± 5	0.26 ± 0.19	6.9 ± 0.2	4.7 ± 0.2	93 ± 4

${ }^{\overline{\mathrm{a}} \text { Mean } \pm \text { SD for four animals except where noted. }}$
$b_{\text {Mean }}+$ SD for three animals.
${ }^{\text {c Major tissues are considered to be skin, muscle, adipose, and liver. Skin is assumed to be }}$ 15% of total body weight; muscle, 50%; and adipose, 10%.
$\mathrm{d}_{\mathrm{N} / \mathrm{A}}$: Samples were not obtained (or analyzed).
$e_{\text {Dose was }}$ administered in 2% ethanol.
${ }^{f}$ Due to loss of a portion of some samples, actual value is higher than that shown.

Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Oral Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Dose ($\mathrm{mg} / \mathrm{kg}$) Excreta	$35^{\text {a }}$				$3.3{ }^{\text {b }}$				$0.67{ }^{\text {b }}$			
	Urine	Breath	Feces	Total	Urine	Breath	Feces	Total	Urine	Breath	Feces	Total
Time (h)												
12	27 ± 10	33 ± 5	d	60 ± 11	$32.8 \pm 5.6^{\text {a }}$	$43.6 \pm 5.5^{\text {a }}$	d	$76.5 \pm 9.6^{\text {a }}$	37.0 ± 4.7	41.0 ± 4.6	d	78.0 ± 7.7
24	35 ± 4	39 ± 4	2.9 ± 2.6	77 ± 7	32.9 ± 2.3	e	5.1 ± 3.7	81.8 ± 5.0	38.7 ± 4.9	$44.7 \pm 5.2^{\text {c }}$	5.8 ± 1.2	$87.4 \pm 9.9^{\text {c }}$
36	37 ± 3	42 ± 4		81 ± 4	33.3 ± 2.1	45.4 ± 6.7		83.7 ± 4.9	39.0 ± 4.0	45.0 ± 4.6		89.8 ± 7.1
48	37 ± 3	43 ± 5	5.6 ± 1.1	86 ± 3	33.4 ± 2.1	$47.9 \pm 6.7^{\text {e }}$	5.5 ± 3.8	86.7 ± 4.8	39.1 ± 4.0	45.7 ± 4.7	6.4 ± 0.9	91.2 ± 7.2
72	38 ± 3	44 ± 5	6.9 ± 0.2	89 ± 3	34.0 ± 1.6	49.1 ± 6.9	5.6 ± 3.8	88.7 ± 4.6	39.4 ± 4.1	46.8 ± 5.0	6.6 ± 0.9	92.8 ± 7.5

[^1]Table 6

Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous Administration of [${ }^{14} \mathrm{C}$]Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Dose ($\mathrm{mg} / \mathrm{kg}$)		$2.8{ }^{\text {a }}$			$2.8{ }^{\text {b }}$			
Excreta	Urine	Breath	Feces	Total	Urine	Breath	Feces	Total
Time (h)								
0-1	$(9.4 \pm 7.2)^{\text {c }}$	16.2 ± 2.2	d	25.7 ± 5.4	1.4 ± 1.3	16.6 ± 0.3	e	18.0 ± 1.1
1-2	$(13.9 \pm 10.5)^{\text {c }}$	26.1 ± 3.2		40.0 ± 7.7	18.0 ± 16.4	26.0 ± 0.5		44.0 ± 16.0
2-4	$(22.8 \pm 8.0)^{\text {c }}$	32.0 ± 4.0		54.8 ± 9.3		31.1 ± 1.3		
4-6	$(28.9 \pm 8.7)^{c}$	34.4 ± 4.4		63.3 ± 8.0	40.2 ± 7.0	33.3 ± 1.4		73.5 ± 6.7
6-12	$(36.3 \pm 6.0)^{c}$	37.4 ± 4.4		73.9 ± 5.4	45.4 ± 7.2	36.4 ± 1.8		81.9 ± 6.1
12-24	$(38.0 \pm 5.7)^{\text {c }}$	39.2 ± 4.8		77.2 ± 5.5	46.8 ± 6.7	38.2 ± 2.2		85.0 ± 5.5
24-36	$(38.4 \pm 5.7)^{\text {c }}$	40.3 ± 4.7		78.8 ± 5.5	47.2 ± 6.7	39.3 ± 2.3		86.6 ± 5.4
36-48	$(38.7 \pm 5.7)^{\text {c }}$	41.0 ± 4.9		79.7 ± 5.5	47.4 ± 6.6	40.0 ± 2.3		87.5 ± 5.4
48-72	$(39.0 \pm 5.6)^{c}$	42.0 ± 5.0		81.0 ± 5.7	47.7 ± 6.6	40.9 ± 2.5	0.27 ± 0.12	88.8 ± 5.0

(continued)

Table 6 (continued)

Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous Administration of [${ }^{14} \mathrm{C}$]Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Dose (mg/kg)		$2.8{ }^{\text {a }}$			$2.6{ }^{\text {a }}$			
Excreta	Urine	Breath	Feces	Total	Urine	Breath ${ }^{\text {f }}$	Feces	Total
Time (h)								
0-1	0.4 ± 0.8	14.6 ± 3.1	e	15.0 ± 2.9	10.4 ± 10.1	16.4 ± 4.0	d	27.6 ± 11.8
0-2	5.0 ± 10.0	22.4 ± 3.4		27.4 ± 7.3	16.6 ± 11.6	24.5 ± 1.9		42.3 ± 11.5
2-4	21.9 ± 17.6	27.7 ± 5.1		49.5 ± 14.2	32.9 ± 6.1	31.3 ± 1.1		65.5 ± 6.3
4-6	27.1 ± 18.1	30.1 ± 6.0		57.2 ± 14.2	38.7 ± 4.7	33.5 ± 0.8		73.5 ± 5.3
6-12	40.6 ± 7.3	32.8 ± 6.3		73.4 ± 3.8				
12-24	50.0 ± 8.7	34.4 ± 6.7	0.55 ± 0.25	82.0 ± 4.2				

${ }^{\mathrm{a}}$ Values are mean \pm SD for four animals. See data for individual animals in Tables A4 - A7 in Appendix.
${ }^{b}$ Values are mean \pm SD for three animals. See data for individual animals in Table A8 in Appendix.
$c_{\text {Part of }}$ the 1 h and 4 h urine samples were lost for some animals. Therefore actual cumulative values are somewhat higher than shown.
$d_{\text {Feces not }}$ analyzed.
$\mathrm{e}_{\text {Feces }}$ analyzed as one combined sample, 0-72 h .
${ }^{f}$ Values are for excretion in breath as CO_{2}. Excretion in breath as volatiles was 0.82 ± 0.47 for $0-1 \mathrm{~h}$, and 1.3 ± 0.8 for $1-2 \mathrm{~h}$ collection.

Table 7

> Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous Administration of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Dose (mg/kg)	2.8				2.9			
Vehicle	10\% Ethanol				2\% Ethanol			
Excreta	Urine	Breath	Feces	Total	Urine	Breath	Feces	Total

Time

(h)

$0-1$	0.42 ± 0.85	14.6 ± 3.1	$\mathrm{~N} / \mathrm{A}^{\mathrm{b}}$	15.0 ± 2.9	2.5 ± 5.0	16.4 ± 1.9	$\mathrm{~N} / \mathrm{A}^{\mathrm{b}}$	18.9 ± 5.5
$1-2$	5.0 ± 10.0	22.4 ± 3.4	$\mathrm{~N} / \mathrm{A}$	27.4 ± 7.3	13.5 ± 15.1	22.4 ± 3.9	$\mathrm{~N} / \mathrm{A}$	35.9 ± 18.7
$2-4$	21.9 ± 17.6	27.7 ± 5.1	$\mathrm{~N} / \mathrm{A}$	49.5 ± 14.2	28.8 ± 8.4	27.8 ± 2.0	$\mathrm{~N} / \mathrm{A}$	56.5 ± 9.3
$4-6$	27.1 ± 18.1	30.1 ± 6.0	$\mathrm{~N} / \mathrm{A}$	57.2 ± 14.2	33.8 ± 6.4	30.6 ± 2.6	$\mathrm{~N} / \mathrm{A}$	63.2 ± 7.2
$6-12$	40.6 ± 7.3	32.8 ± 6.3	$\mathrm{~N} / \mathrm{A}$	73.4 ± 3.8	38.2 ± 5.8	32.4 ± 1.4	$\mathrm{~N} / \mathrm{A}$	70.6 ± 6.1
$12-24$	50.0 ± 8.7	34.4 ± 6.7	0.55 ± 0.25	82.0 ± 4.2	45.2 ± 5.3	35.8 ± 1.0	0.5 ± 0.1	81.4 ± 5.2

${ }^{a_{\text {Values }} \text { are mean } \pm \text { SD for four animals. See data for individual animals in Tables A5 - A6. }}$
${ }^{\mathrm{b}}$ Feces analyzed as one combined sample, 0-72 h .

Table 8

Amount of ${ }^{14} \mathrm{C}$-Labeled Compounds in Tissues 24 h After Intravenous Administration of [${ }^{14}$ C]Crotonaldehyde to Fischer 344 Male Rats ${ }^{\text {a }}$

Dose (mg/kg) Dose Vehicle Tissue	2.8			2.9		
	10\% EtOH/H20			$2 \% \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$		
	ng-eq Cmpd per g Tissue	TRB ${ }^{\text {d }}$	\% Dose	ng-eq Cmpd per g Tissue	TRB ${ }^{\text {d }}$	\% Dose
I. Blood	606 ± 149	1.0 ± 0	1.4 ± 0.3	782 ± 112	1.0 ± 0	1.7 ± 0.3
II. Major Tissues						
Skin - Ear	344 ± 71	0.62 ± 0.31		344 ± 51	0.44 ± 0.03	
Neck	310 ∓ 105	0.57 ∓ 0.36		295 ± 39	0.38 ± 0.07	
Abdomen	342 ± 160	0.64 ∓ 0.48		413 ∓ 81	0.53 ± 0.06	
Hindquarters	388 ± 87	0.70 ± 0.36		406 ± 35	0.53 ± 0.11	
Average	346 ± 106	0.63 ± 0.38	1.9 ± 0.6	364 ± 39	0.47 ± 0.06	1.9 ± 0.2
Muscle - Neck	191 ± 25	0.32 ± 0.06		218 ± 39	0.28 ± 0.08	
Abdomen	149 ± 9	0.26 ± 0.09		179 ± 23	0.23 ∓ 0.03	
Hindleg	159 戸 12	0.27 ± 0.05		159 ± 10	0.20 ± 0.02	
Average	166 ± 10	0.28 ± 0.07	3.0 ± 0.1	185 ± 15	0.24 ∓ 0.04	3.2 ± 0.3
Adipose - Kidney	$147+23$	0.25 ± 0.04		$236+71$	0.30 ± 0.05	
Epididymis	109 ± 27	0.19 ± 0.07		157 ± 74	0.20 ± 0.09	
Mesenteric	208 ± 79	0.35 ∓ 0.13		433 ± 190	0.54 ± 0.16	
Average	155 ± 41	0.26 ± 0.08	0.56 ± 0.13	276 ± 104	0.34 ± 0.09	0.97 ± 0.38
Liver	456 ± 46	0.80 ± 0.28	0.68 ± 0.07	537 ± 53	0.70 ± 0.16	0.77 ± 0.09

Amount of ${ }^{14} \mathrm{C}$-Labeled Compounds in Tissues 24 h After Intravenous Administration of [${ }^{14}$ C]Crotonaldehyde to Fischer 344 Male Rats ${ }^{\text {a }}$

Dose ($\mathrm{mg} / \mathrm{kg}$)	2.8			2.9		
Dose Vehicle	10\% EtOH/H20			$2 \% \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$		
Tissue	ng-eq Cmpd per g Tissue	TRB ${ }^{\text {d }}$	\% Dose	ng-eq Cmpd per g Tissue	TRB ${ }^{\text {d }}$	\% Dose

III. GI Tract Tissues

Esophagus	533 ± 86	0.90 ± 0.19	0.014 ± 0.002	939 ± 399	1.2 ± 0.66	0.030 ± 0.010
Stomach	385 † 61	0.68 ± 0.30	0.058 ± 0.010	386 ± 83	0.49 ± 0.05	0.071 ± 0.013
Small Intestine	490 士 87	0.87 ∓ 0.41	0.22 ∓ 0.06	445 ± 68	0.57 ± 0.04	0.19 ± 0.04
Cecum	268 ¢ 116	0.50 ± 0.36	0.033 ± 0.007	278 ∓ 26	0.36 ± 0.02	$0.042 \pm{ }^{ \pm} 0.004$
Large Intestine	542 戸 113	0.96 ± 0.40	0.083 ± 0.016	$5 \overline{7} 9^{\text {c }}$	$0 . \overline{6} 3$	$0 . \overline{0} 77$

IV. Reproductive Tissues

Testes	$176+30$	0.31 ± 0.14	0.068 ± 0.012	$172+18$	0.22 ± 0.03	0.062 ± 0.008
Seminal Vesicles	315 ± 46	0.56 ∓ 0.24	0.034 ∓ 0.006	316 ± 12	0.41 ± 0.05	0.027 ± 0.012
Prostate	415 ∓ 46	0.73 ± 0.29	0.014 ∓ 0.002	344 ± 128	0.44 ± 0.16	0.015 ± 0.005

V. Other Tissues

Trachea	$916+118$	1.5 ± 0.2	$0.019+0.006$	$1059+357$	1.3 ± 0.26	0.019 ± 0.010
Lungs	921 ¥ 76	1.6 ± 0.3	0.15 ± 0.01	974 ± 99	1.2 ± 0.2	0.16 ± 0.01
Adrenals	609 + 82	1.1 ± 0.4	0.0065 ∓ 0.0012	816 ± 114	1.0 ± 0.01	0.0074 ± 0.0007
Spleen	612 ± 73	1.0 ± 0.3	0.044 ± 0.006	632 ± 83	0.81 ∓ 0.04	0.051 ± 0.012
Kidneys	421 ± 89	0.75 ∓ 0.38	0.12 ∓ 0.02	432 ± 68	0.55 ± 0.06	0.12 ± 0.02
Eyes	163 ¢ 41	$0.29 \pm 0.16 \mathrm{~b}$	0.0067 ± 0.0023	223 ± 33	0.29 ± 0.06	0.0084 ± 0.0009
Brain	$282 \pm 126^{\text {b }}$	$0.50 \mp 0.08{ }^{\text {b }}$	$0.073 \pm 0.029 \mathrm{~b}$	$343 \pm 29 \mathrm{~b}$	$0.44 \pm{ }^{ \pm}{ }^{0.06} \mathrm{~b}$	$0.085 \pm 0.008 \mathrm{~b}$
Heart	$340 \pm 84^{\text {b }}$	$0.60 \mp 0.06^{\text {b }}$	$0.039 \pm 0.011^{\text {b }}$	$320 \pm 17{ }^{\text {b }}$	$0.40 \pm{ }^{(1) .05}$	$0.035 \pm 0.0004^{\text {b }}$

[^2][^3]Table 9

[^4]Table 10

> Tissue-Blood Ratios of ${ }^{14} \mathrm{C}$-Labeled Compounds After Oral Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Fischer 344 Male Rats (TBR)

Dose $(\mathrm{mg} / \mathrm{kg})$	35	0.67
I. Blood	1.0 ± 0.0	1.0 ± 0.0

II. Major Tissues

Skin - Ear	$2.0+0.1$	$2.1+0.2$
Neck	0.94 ± 0.25	2.3 ± 0.6
Abdomen	1.3 ± 0.1	1.5 ± 0.4
Hindquarters	1.2 ± 0.5	1.3 ± 0.1
Average	1.4 ± 0.2	1.8 ± 0.2
Muscle - Neck	0.64 ± 0.03	0.87 ± 0.12
Abdomen	0.39 ± 0.08	0.60 ± 0.02
Hindleg	0.42 ± 0.06	0.50 ± 0.12
Average	0.48 ± 0.03	0.66 ± 0.08
Adipose - Kidney	0.62 ± 0.15	$0.36 \pm 0.20^{\text {b }}$
Epididymis	0.48 ∓ 0.11	0.48 ± 0.08
Mesenteric	1.1 ± 0.3	1.1 ± 0.3
Average	0.75 ± 0.14	0.61 ± 0.16
Liver	2.9 ± 0.5	7.1 ± 3.5

III. GI Tract Tissues
Esophagus
Stomach
Small Intestine
Cecum

3.0 ± 0.2	4.4 ± 1.0
3.9 ± 0.6	14 ± 5
2.0 ± 0.3	0.76 ∓ 0.02
0.94 ± 0.28	0.27 ± 0.19
1.5 ± 0.1	0.68 ± 0.31

IV. Reproductive Tissues

Testes	0.98 ± 0.35	0.69 ± 0.03
Seminal Vesicles	1.4 ± 0.3	1.4 ± 0.05
Prostate	1.4 ± 0.1	1.3 ± 0.1

V. Other Tissues

Trachea	2.0 ± 0.7	2.3 ± 0.1
Lungs	1.8 ± 0.6	1.6 ± 0.1
Adrenals	4.6 ± 0.3	3.4 ± 0.6
Spleen	2.0 ± 0.1	1.8 ± 0.1
Kidneys	2.0 ± 0.2	
Eyes	0.49 ± 0.03	1.7 ± 0.1
Brain	0.95 ± 0.04	0.48 ± 0.03
Heart	0.92	0.70 ± 0.08
		1.1 ± 0.1

[^5]Table 11
Amount of ${ }^{14}$ C-Labeled Compounds in Tissues 72 h After Oral Administration of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Fischer 344 Male Rats (\% Dose) ${ }^{\text {a }}$

Dose	(mg/kg)	35	0.67
	Blood	0.43 ± 0.1	0.41 ± 0.06
II. Major Tissues			
	Skin	1.4 ± 0.2	1.8 ± 0.3
	Muscle	1.6 ± 0.1	2.2 ± 0.5
	Adipose	0.51 ± 0.10	0.39 ± 0.07
	Liver	0.66 ± 0.12	1.5 ± 0.7

III. GI Tract Tissues

Esophagus	0.017 ± 0.001	0.022 ± 0.004
Stomach	0.16 ± 0.03	0.83 ± 0.20
Small Intestine	0.13 ± 0.01	0.10 ± 0.02
Cecum	0.022 ± 0.005	0.021 ± 0.008
Large Intestine	0.041 ± 0.003	0.034 ± 0.004

IV. Reproductive Tissues

Testes	0.070 ± 0.026	0.046 ± 0.003
Seminal Vesicles	0.018 ± 0.005	0.020 ± 0.002
Prostate	0.012 ± 0.006	0.010 ± 0.003

V. Other Tissues

Trachea

\[

\]

$$
\begin{aligned}
0.0099 & \pm 0.0022 \\
0.040 & \ddagger 0.003 \\
0.0047 & \ddagger 0.0007 \\
0.022 & \pm 0.003 \\
0.080 & \pm 0.007 \\
0.0032 & \ddagger 0.0003 \\
0.030 & \ddagger 0.008 \\
0.023 & \pm 0.010
\end{aligned}
$$

${ }^{\text {a }}$ Values are mean \pm SD for 3 animals.

- $\mathrm{b}_{\text {Mean }} \pm$ range for 2 animals.
${ }^{C}$ Values for 1 animal.
${ }^{\mathrm{d}}$ Adipose assumed to be 10% of body weight; muscle, 50% of body weight; and skin, 15% of body weight.

Concentration of ${ }^{14} \mathrm{C}$-Labeled Compounds in Tissues After Intravenous Administration of $2.6-2.9 \mathrm{mg} / \mathrm{kg}$ of - $\quad\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Fischer 344 Male Rats (ag-eq/g) ${ }^{\text {a }}$

Time (h)	0.25	0.75	2	6	24	72
I. Blood	11400 ± 100	5820 ± 630	2370 ± 70	950 ± 88	606 ± 149	371 ± 96
II. Major Tissues						
Skin - Ear	$1200+80$	1010 ± 32	516 ± 14	383 ± 23	344 ± 71	264 ± 29
Nkin Neck	1180 ± 50	1070 ± 100	482 ± 92	325 ± 102	310 ± 105	193 ± 66
Abdomen	1430 ∓ 90	1260 ± 150	731 ± 187	368 ± 70	342 ± 160	182 ± 36
Hindquarters	927 ± 139	954 ± 36	692 ± 65	403 ± 2	388 ± 87	196 ± 5
Average	1160 ± 60	1070 ∓ 19	605 ± 32	366 ± 12	346 ± 106	209 ± 28
Muscle - Neck	1190 ± 20	839 ± 71	$385{ }^{\text {c }}$	228 ± 56	191 ± 25	122 ± 19
Muscle Abdomen	$974 \pm 158^{\text {b }}$	746 ± 57	382 ± 47	230 ± 18	149 ± 9	133 ± 27
Hindquarters	910 ± 24	750 ± 44	357 ± 34	156 ± 23	159 ± 12	98 + 11
Average	1030 ± 40	778 ± 52	376 ± 29	205 ± 28	166 ± 10	118 ± 19
Adipose - Kidney	248 ± 94	136 ± 26	$99+41^{b}$	94 ± 27	147 109 +27	55 ± 8
Epididymis	263 ∓ 92	284 ± 196	$109 \ddagger 27$	99 ± 40	109 ± 27	70 ± 23
Mesenteric	733 ± 266	394 ± 153	281 ± 72	264 ± 66	208 ± 79	$144+35$
Average	414 ± 133	271 ± 69	176 ± 52	153 ± 37	155 ± 41	90 ± 20
Liver	4150 ± 147	3490 ± 130	2120 ± 288	937 ± 147	456 ± 46	293 ± 25
III. GI Tract Tissues						
Esophagus	N/A	N/A	N/A	747 ± 139	533 ± 86	N/A
Stomach	N/A	N/A	N/A	663 ± 56	$385+61$	N/A
Small Intestine	N/A	N/A	N/A	1240 ± 238	490 ± 87	N/A
Cecum	N/A	N/A	N/A	695 ± 205	268 ± 116	N/A
Large Intestine	N/A	N/A	N/A	995 ± 90	542 ± 113	N/A

Table 12 (continued)

Concentration of ${ }^{14}$ C-Labeled Compounds in Tissues After Intravenous Administration of $2.6-2.9 \mathrm{mg} / \mathrm{kg}$ of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Fischer 344 Male Rats (ng-eq/g) ${ }^{\text {a }}$

Time (h)	0.25	0.75	2	6	24	72
IV. Reproductive Tissues						
Testes	N/A	N/A	N/A	303 ± 43	176 ± 30	N/A
Seminal Vesicles	N/A	N/A	N/A	$284 \pm 180{ }_{\text {b }}$	315 ± 46	N/A
Prostate	N/A	N/A	N/A	$728 \pm 241^{\text {b }}$	415 ± 46	N/A
V. Other Tissues						
Trachea	N/A	N/A	N/A	1190 ± 240	916 ± 118	461 ± 63
Lungs	N/A	N/A	N/A	1410 ± 270	921 ± 76	504 ± 39
Adrenals	N/A	N/A	N/A	779 ± 42	609 ± 82	536 ∓ 70
Spleen	N/A	N/A	N/A	944 ± 36	612 ± 73	N/A
Kidneys	N/A	N/A	N/A	856 ± 79	421 戸 89	N/A
Eyes	N/A	N/A	N/A	247 ± 21 b	$163 \pm 41 \mathrm{~b}$	N/A
Brain	N/A	N/A	N/A	$631 \pm 55{ }^{\text {b }}$	$282 \pm 126^{\text {b }}$	N/A
Heart	N/A	N/A	N/A	568 ± 35	$340 \pm 84^{\circ}$	N/A

[^6]Tissue Blood Ratios of ${ }^{14}$ C-Labeled Compounds in Tissues After Intravenous Administration of $2.6-2.9 \mathrm{mg} / \mathrm{kg}$ of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Fischer 344 Male Rats (TBR) ${ }^{\text {a }}$

Time (h)	0.25	0.75	2	6	24	72
I. Blood	1.0 ± 0.0					
II. Major Tissues						
Skin - Ear	0.10 ± 0.01	0.17 ± 0.02	0.22 ± 0.002	0.40 ± 0.03	0.62 ± 0.31	0.76 ± 0.31 0.54 ± 0.17
Skin - ${ }_{\text {Neck }}^{\text {Nar }}$	0.10 ± 0.01	0.18 ± 0.03	0.20 ± 0.03	0.35 ± 0.13	0.57 ± 0.36 0.64 ± 0.48	0.54 ± 0.17 $0.51+0.14$
Abdomen	0.12 ∓ 0.01	0.22 ± 0.02	0.31 ± 0.08	$0.39+0.06 \mathrm{~b}$	$0.64 \pm \begin{aligned} & + \\ & 0.76\end{aligned}$	$0.55+0.15$
Hindquarters	0.08 ± 0.01	0.16 ± 0.01	0.29 ± 0.02	0.43 ± 0.05	0.63 ± 0.38	0.59 ∓ 0.18
Average	0.10 ± 0.01	0.18 ± 0.02	0.26 ± 0.02	0.39 ± 0.04	$0.63+0.38$	
		$0.14+0.02$	$0.17{ }^{\text {c }}$	0.24 ± 0.08	0.32 ± 0.06	0.34 ± 0.08
Muscle - Neck	0.10 ± 0.006 0.08 ± 0.01	0.13 ± 0.01	0.16 ± 0.02	0.24 ∓ 0.04	0.26 ∓ 0.09	0.37 ± 0.10
Hindquarters	0.080 ± 0.002	0.13 ∓ 0.02	0.15 ± 0.01	0.17 ± 0.04	0.27 ± 0.05	0.28 ± 0.08
Average	0.091 ± 0.004	0.13 ± 0.02	0.16 ∓ 0.01	0.22 ∓ 0.05	0.28 ± 0.07	0.33 ± 0.09
		$0.023+0.002$	$0.043+0.019^{\text {b }}$	0.10 ± 0.03	0.25 ± 0.04	0.16 ± 0.07
Adipose - Kidney	0.022 ± 0.008 $0.023+0.008$	0.047 ± 0.027	$0.046 \div 0.012$	0.10 ± 0.04	0.19 ± 0.07	0.20 ± 0.08
Epididymis	$0.023+0.008$ $0.064+0.024$	0.047 ± 0.027 $0.068+0.028$	0.046 ± 0.012	0.28 ± 0.07	0.35 ∓ 0.13	0.42 ± 0.22
Mesenteric	0.064 ± 0.024 0.036 ± 0.012	0.068 ± 0.028 $0.046+0.008$	0.12 0.074 +0.02	0.16 ± 0.04	0.26 ± 0.08	0.26 ± 0.12
Average	0.036 ± 0.012	0.046 ± 0.008	0.074 ± 0.022	0.16 ± 0.04		
Liver	0.36 ± 0.01	0.60 ± 0.08	0.89 ± 0.11	1.0 ± 0.2	0.80 ± 0.28	0.84 ± 0.32
III. GI Tract Tissues						
			N/A	0.79 ± 0.17	0.90 ± 0.19	N/A
Esophagus	N/A	N/A	N/A	0.70 ± 0.01	0.68 ∓ 0.30	N/A
Stomach	N/A	N/A	N/A	1.3 ∓ 0.2	0.87 ± 0.41	N/A
Small Intestine	N/A	N/A	N/A	0.73 ∓ 0.17	0.50 ± 0.36	N/A
Cecum	N/A	N/A	N/A	1.0 1.0	0.96 ± 0.40	N/A
Large Intestine	N/A	N/A	N/A	1.0 ± 0.02		

Tissue Blood Ratios of ${ }^{14}$ C-Labeled Compounds in Tissues After Intravenous Administration of 2.6 - $2.9 \mathrm{mg} / \mathrm{kg}$ of $\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Fischer 344 Male Rats (TBR) ${ }^{\text {a }}$

Time		0.25	0.75	2	6	24	72
IV. Reproductive Tissues							
	Testes	N/A	N/A	N/A	0.32 ± 0.02	0.31 ± 0.14	N/A
	Seminal Vesicles	N/A	N/A	N/A	$0.31 \pm 0.22 \mathrm{~b}$	0.56 ± 0.24	N/A
	Prostate	N/A	N/A	N/A	$0.80 \mp 0.21{ }^{\text {b }}$	0.73 ± 0.29	N/A
V. Other Tissues							
	Trachea	N/A	N/A	N/A	1.2 ± 0.2	1.5 ± 0.2	1.3 ± 0.2
	Lungs	N/A	N/A	N/A	1.5 ∓ 0.4	1.6 ± 0.3	1.4 ± 0.4
	Adrenals	N/A	N/A	N/A	0.82 ± 0.04	1.1 ± 0.4	1.5 ∓ 0.5
	Spleen	N/A	N/A	N/A	1.0 ∓ 0.05	1.0 ∓ 0.2	N/A
	Kidneys	N/A	N/A	N/A	0.90 ± 0.07	0.75 ± 0.38	N/A
	Eyes	N/A	N/A	N/A	$0.26 \pm 0.01{ }^{\text {b }}$	$0.29 \pm 0.16{ }_{6}$	N/A
	Brain	N/A	N/A	N/A	$0.66 \pm 0.03{ }^{\text {b }}$	$0.50 \pm 0.08{ }^{\text {b }}$	N/A
	Heart	N/A	N/A	N/A	0.60 ± 0.05	$0.60 \pm 0.06{ }^{\text {b }}$	N/A

${ }^{2}$ Values are mean \pm SD for 3 animals. See Tables A15-A32 for individual animal data.
$\mathrm{b}_{\text {Mean }} \pm$ range for 2 animals.
${ }^{c}$ Values for 1 animal.

Amount of ${ }^{14}$ C-Labeled Compound in Tissues After Intravenous Administration of $2.6-2.9 \mathrm{mg} / \mathrm{kg}$ of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Fischer 344 Male Rats (\% Dose) ${ }^{\text {a }}$

Time		0.25	0.75	2	6	24	72
I.	Blood	25 ± 0.3	13 ± 2	5.1 ± 0.12	2.3 ± 0.2	1.4 ± 0.3	0.83 ± 0.19
II. Major Tissues							
	Skin	6.0 ± 0.3	5.6 ± 0.2	3.1 ± 0.2	2.1 ± 0.1	1.9 ± 0.6	1.1 ± 0.2
	Muscle	18 ∓ 0.7	14 ∓ 1	6.4 ∓ 0.5	4.0 ± 0.6	3.0 ± 0.1	2.1 ± 0.4
	Adipose	1.4 ± 0.5	0.95 ± 0.26	0.60 ± 0.17	0.59 ± 0.14	0.56 ± 0.13	0.32 ± 0.08
	Liver	5.0 ± 0.3	3.8 ± 0.3	2.8 ± 0.6	1.3 ± 0.2	0.68 ± 0.07	0.38 ± 0.04

III. GI Tract Tissues

| Esophagus | N/A | N/A | N/A | 0.027 ± 0.007 | 0.014 ± 0.002 | N/A |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| Stomach | N/A | N/A | N/A | 0.11 ∓ 0.01 | 0.058 ∓ 0.010 | N/A |
| Small Intestine | N/A | N/A | N/A | 0.52 ∓ 0.08 | 0.22 ∓ 0.06 | N/A |
| Cecum | N/A | N/A | N/A | 0.071 ∓ 0.011 | 0.033 ∓ 0.007 | N/A |
| Large Intestine | N/A | N/A | N/A | 0.19 ± 0.02 | 0.083 ± 0.016 | N/A |

IV. Reproductive Tissues

Testes	N/A	N/A	N/A	0.12	0.01	0.068	0.012	N/A
Seminal Vesicles	N/A	N/A	N/A	0.032	0.017 b	0.034	0.006	N/A
Prostate	N/A	N/A	N/A	0.026	$0.010^{\text {b }}$	0.014	0.002	N/A

(continued)

Table 14 (continued)
Amount of ${ }^{14}$ C-Labeled Compound in Tissues After Intravenous Administration of $2.6-2.9 \mathrm{mg} / \mathrm{kg}$ of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Fischer 344 Male Rats (\% Dose) ${ }^{\text {a }}$

$\mathrm{b}_{\text {Mean }} \pm$ range for 2 animals.
${ }^{c}$ Values for 1 animal.

Figure Al. Data Sheets for $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde Supplied by MRI

SHIPPING ORDEE
MIDWEST RESEARCH INSTITUTE
425 Volker Soulovard, Kansas City, Miseourl 64110
\square SALE
$\boxed{\square}$ TRANSFER EARER TO TWIS NO. W
\square RETURN FOR CREDIT

- xchange

DATE $8 / 1 / 83$
TO , Research Triang? Institute, Research Triangle Park, NC 27709

Figure Al. (continued)

ANALYTICAL DATA SUMMARY

MRI Project No. 7543-C(1)

```
COMPOUND: {U-14}\textrm{C}}\mathrm{ -Crotonaldehyde
FORMULA: }\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{6}{}\textrm{O
    * * * *
STRUCTURE: }\mp@subsup{\textrm{CH}}{3}{}\textrm{CH}=\textrm{CHCHO
LOT NO.: 83-127-16-30
AMOUNT: 4.73 mCi (2 x 2.365 mCi)
SPECIFIC ACTIVITY: 2.31 mCi/mM
ESTIMATED PURITY: \geq99%, chemical and radiochemical (GLC)
FORM SUPPLIED: 2 x (2.365 mCi in 0.65 ml water) in 2-ml amber ampules
    under argon
GLC ANALYSIS: 20% SP-2100 w/0.1% Carbowax
    Oven Temperature: }5\mp@subsup{0}{}{\circ}\mathrm{ isothermal
    Injector Temperature: 250
    Detector Temperature: 250 FID
    Carrier Gas: 40 ml argon/min
    Detector Gas: }\mp@subsup{H}{2}{},30\textrm{ml}/\textrm{min
        Air, 300 ml/min
    Retention Time: Crotonaldehyde, B.9 min
    Injection Solvent: Ether (conc. ~ 1 < 10-1 mH/ml)
    Traces attached
STORAGE AND HANDLING RECOMMENDATIONS: Store at \leq 0* C in dark, open
    only in a well-ventilated hood
```

Figure A1. (continued)

Figure 1 - GLC of Ether Sample Solvent (20\% SP-2100w/0.1\% Carbowax; 50° Isothermal); RT Ether $\sim 3.4 \mathrm{~min}$

Figure 2 - GLC of Crotonaldehyde (Eastman) in Ether Solvent, RT Crotonaldehyde 8.9 min : Conditions Same as Figure 1

Figure 4 - Mass GLC of $\{(U-14 C]$-Crotonaldehyde, Lot No. 83-127-16-30 in Ether Solvent; Conditions Same as Figure 1

Figure 5 - Mass GLC of Coinjection of [U-14C]-Crotonaldehyde, Lot No. 83-127-16-30 and Crotonaldehyde (Eastman) in Ether Solvent; Conditions Same as Figure 1

Table Al

> Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Oral Administration of $0.67 \mathrm{mg} / \mathrm{kg}$ $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Rat	4188-121-5				4188-121-6				4188-121-7			
Excreta	Urine	Breath	Feces	Total	Urine	Breath	Feces	Total	Urine	Breath	Feces	Total
Time (h)												
12	39.3	37.4	a	76.7	40.1	46.1	a	86.2	31.6	39.4	a	71.0
24	40.8	b	7.2	85.4	41.2	48.4	4.8	94.4	34.2	41.0	5.2	80.4
36	41.1	$41.7{ }^{\text {b }}$		90.0	41.6	50.3		96.7	34.4	42.9		82.5
48	41.2	42.5	7.4	91.1	41.7	51.1	5.7	98.5	34.5	43.5	6.1	84.1
72	41.5	43.3	7.6	92.4	42.1	52.6	5.8	100.5	34.7	44.5	6.3	85.5

${ }^{\mathrm{a}}$ The first feces collection was $0-24 \mathrm{~h}$.
$\mathrm{b}_{\text {The }}$ 12-24 h and the $24-36 \mathrm{~h}$ breath samples were accidentally combined before analysis. The percent dose excreted for this combined sample is recorded as one sample, 24-36 h.

Cumulative Excretion of.Total ${ }^{14} \mathrm{C}$ After Oral Administration of $3.3 \mathrm{mg} / \mathrm{kg}$ [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Rat Excreta	4188-121-2				4188-121-3				4188-121-4			
	Urine	Breath	Feces	Total	Urine	Breath	Feces	Total	Urine	Breath	Feces	Total
Time (h)												
12	33.9	46.9	a	80.8	26.0	36.1	a	62.1	31.8	48.5	a	80.3
24	35.2	b	2.8	84.9	30.6	b	9.4	76.1	32.8	b	3.2	84.5
36	35.4	48.4		86.6	31.0	37.7		78.1	33.2	50.1		86.5
48	35.4	$51.0{ }^{\text {b }}$	3.2	89.6	31.2	$40.2{ }^{\text {b }}$	9.8	81.2	33.3	$52.6{ }^{\text {b }}$	3.4	89.3
72	35.6	52.4	3.3	91.3	32.3	41.1	10.0	83.4	34.1	53.7	3.5	91.3

${ }^{\text {a }}$ The first feces collection was $0-24 \mathrm{~h}$.
$\mathrm{b}_{\text {The }} 12-24 \mathrm{~h}$ and the $36-48 \mathrm{~h}$ breath samples were accidentally combined before analysis. The percent dose excreted for this combined sample is recorded as one sample, $36-48 \mathrm{~h}$.

Table A3

Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Oral Administration of $35 \mathrm{mg} / \mathrm{kg}$ [${ }^{14}$ C]Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Rat	4188-77-1 ${ }^{\text {a }}$					4188-77-2					4188-77-3					4188-77-4				
Excreta	Urine	Breath CO_{2}	$\begin{aligned} & \text { Breath } \\ & \text { volatiles } \end{aligned}$	Feces	Total	Urine	Breath CO_{2}	$\begin{aligned} & \text { Breath } \\ & \text { volatiles } \end{aligned}$	Feces	Total	Urine	Breath CO_{2}	$\begin{aligned} & \text { Breath } \\ & \text { volatiles } \end{aligned}$	Feces	Total	Urine	Breath CO_{2}	$\begin{aligned} & \text { Breath } \\ & \text { Volatiles } \end{aligned}$	Feces	Total
Time (h)																				
12	20	28	0.47	b	49	34	38	0.26	b	73	36	29	0.097	b	65	17	34	0.12	b	51
24	30	38	0.51	0	69	38	42	0.28	5.7	86	39	33	0.10	4.5	76	33	41	0.13	1.6	76
36	34	44	0.52		79	39	43	0.28		88	40	35	0.11		79	34	43	0.14		79
48	35	46		4.7	87	39	44		6.2	89	41	36		6.8	84	35	44		4.7	84
72	35	48		7.0	91	40	45		6.6	92	41	36		6.9	85	35	45		7.2	87

${ }^{\text {a }}$ This animal was not used in tissue data compilation.
${ }^{\mathrm{b}}$ The first feces collection was $0-24 \mathrm{~h}$.

Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous Administration of $2.6 \mathrm{mg} / \mathrm{kg}\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Animal Excreta	4188-178-1				4188-178-2				4188-178-3				4188-178-4			
	Urine	$\begin{array}{r} \text { Breath } \\ \left(\mathrm{CO}_{2}\right) \end{array}$	$\begin{gathered} \text { Breath } \\ \text { (volatiles) } \end{gathered}$	Total	Urine	$\begin{gathered} \text { Breath } \\ \left(\mathrm{CO}_{2}\right) \end{gathered}$	$\begin{gathered} \text { Breath } \\ \text { (volatiles) } \end{gathered}$	Total	Urine	$\begin{gathered} \text { Breath } \\ \left(\mathrm{CO}_{2}\right) \end{gathered}$	$\begin{aligned} & \text { Breath } \\ & \text { (volatiles) } \end{aligned}$	Total	Urine	$\begin{gathered} \text { Breath } \\ \left(\mathrm{CO}_{2}\right) \end{gathered}$	$\begin{gathered} \text { Breath } \\ \text { (volatiles) } \end{gathered}$	Total
Time (h)																
0-1	0.0	18.9	0.5	19.4	3.8	10.5	1.5	15.8	20.8	17.5	0.8	39.1	17.2	18.6	0.5	36.3
1-2	0.2	24.6	0.9	25.7	27.4	21.8	2.4	51.6	21.0	25.6	1.0	47.6	17.7	26.0	0.8	44.5
2-4	27.9	30.8		59.6	34.0	30.0		66.4	28.6	32.4		62.0	41.1	32.0		73.9
4-6	33.7	32.7		67.3	40.4	33.0		75.8	36.3	34.1		71.4	44.4	34.3		79.5

Table A5

Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous Administration of $2.8 \mathrm{mg} / \mathrm{kg}\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde in a Vehicle of 10% Aqueous Ethanol to Male Fischer 344 Rats (\% Dose)

Animal	4188-151-1				4188-151-2				4188-151-3				4188-151-4			
Excreta	Urine	Breath	Feces	Total												
Time (h)																
0-1	0	17.9		17.9	0	11.1		11.1	1.7	12.8		14.5	0	16.4		16.4
1-2	0	26.4		26.4	0	23.1		23.1	20.0	18.0		38.0	0	22.2		22.2
1-2	0	26.4 33.6		33.6	30.0	29.6		59.6	20.0	21.5		41.5	37.0	26.2		63.2
2-4	0	33.6		33.6	35.4	29.6			36.0	22.6		58.6	37.0	28.4		65.4
4-6	0	36.7		36.7	35.4	32.6		68.0	36.0	22.6		58.6	47.6	31.1		
6-12	31.0	40.3		71.3	39.1	34.7		73.8	44.8	25.2		70.0	47.6	31.1		
12-24	37.3	42.6	0.9	80.8	42.0	36.1	0.5	78.6	53.3	26.5	0.5	80.3	55.3	32.5	0.3	88.1

Table A6

Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous Administration of $2.9 \mathrm{mg} / \mathrm{kg}\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde in a Vehicle of 2% Aqueous Ethanol to Male Fischer 344 Rats (\% Dose)

Animal	4188-152-1				4188-152-2				4188-152-3				4188-152-4			
Excreta	Urine	Breath	Feces	Total												
Time (h)																
0-1	0	14.9		14.9	0	18.9		18.9	9.9	16.7		26.6	0	15.1		15.1
1-2	0	20.7		20.7	31.7	26.1		57.8	20.1	25.0		45.1	2.2	17.7		19.9
2-4	21.6	25.4		47.0	40.4	28.9		69.3	23.9	29.9		53.8	29.2	26.8		56.0
4-6	29.5	27.0		56.5	42.9	30.5		73.4	29.4	31.6		61.0	33.2	28.8		62.0
6-12	33.7	30.6		64.3	45.1	32.9		78.0	33.0	34.0		67.0	41.0	32.0		73.0
12-24	41.5	34.7	0.3	76.5	51.8	35.4	0.6	87.8	40.3	37.1	0.5	77.9	47.0	36.0	0.6	83.6

Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous Administration of $2.8 \mathrm{mg} / \mathrm{kg}\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Animal	4275-40-1				4275-40-2				4275-40-3				4275-40-4			
Excreta	Urine	Breath	Feces	Total												
Time (h)																
0-1	0	18.0	a	18.0	$7.6{ }^{\text {b }}$	18.4	a	26.0	$14.6{ }^{\text {b }}$	14.3	a	28.9	$15.6{ }^{\text {b }}$	14.3	a	29.9
1-2	0	30.2		30.2	15.3	27.1		42.4	14.8	24.0		38.8	25.5	23.1		48.6
2-4	$26.3{ }^{\text {b }}$	37.8		64.1	17.7	31.5		49.2	15.0	29.8		44.8	32.4	28.8		61.2
4	26.8	40.8		67.6	17.8	33.8		51.6	33.1	31.9		65.0	38.0	31.0		69.0
	33.6	43.7		77.3	29.6	36.5		66.1	42.3	35.5		77.8	40.7	33.7		74.4
6-12	33.6	43.7		77.3	29.6	38.5				37.7		81.6	41.6	35.1		76.7
12-24	34.8	46.1		80.9	31.6	38.1		69.7	43.9	37.7		81.6	41.6	35.1		
24-36	35.4	47.1		82.5	32.1	39.2		71.3	44.4	38.8		83.2	41.9	36.1		78.0
36-48	35.7	48.0		83.7	32.3	39.9		72.2	44.6	39.4		84.0	42.1	36.7		78.8
48-72	36.2	49.2		85.4	32.6	40.8		73.4	44.9	40.4		85.3	42.4	37.5		79.9

${ }^{\text {a Feces were not analyzed. }}$
${ }^{\mathrm{b}}$ Urine sample was partially lost due to leaky joints in the metabolism cage.

Table A8

Cumulative Excretion of Total ${ }^{14} \mathrm{C}$ After Intravenous Administration of $2.8 \mathrm{mg} / \mathrm{kg}\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Male Fischer 344 Rats (\% Dose)

Animal Excreta	4275-130-1				4275-130-2				4275-130-4			
	Urine	Breath	Feces ${ }^{\text {a }}$	Total	Urine	Breath	Feces ${ }^{\text {a }}$	Total	Urine	Breath	Feces ${ }^{\text {a }}$	Total
Time (h)												
0-1	2.6	16.2		18.8	1.7	16.8		18.5	0	16.8		16.8
1-2	21.8	25.7		47.5	32.2	25.7		57.9	0	26.5		26.5
6-12	37.5	37.3		74.8	51.4	34.3		85.7	47.4	37.7		85.1
12-24	39.3	39.3		78.6	52.3	35.7		88.0	48.8	39.6		88.4
24-36	39.8	40.5		80.3	52.7	36.7		89.4	49.2	40.8		90.0
36-48	40.1	41.2		81.3	52.9	37.3		90.2	49.4	41.5		90.9
48-72	40.3	42.3	0.4	83.0	53.1	38.0	0.2	91.3	49.6	42.3	0.2	92.1

[^7]Table A9. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 72 h after Oral Administration of $0.67 \mathrm{mg} / \mathrm{kg}\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Rat 4188-121-5

Table Al3. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 72 h after Oral Administration of $34 \mathrm{mg} / \mathrm{kg}\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Rat 4188-77-3

Table Al6. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 0.25 h after Intravenous Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Rat 4275-87-2

Table Al7. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 0.25 h after Intravenous Administration of $1{ }^{14} \mathrm{C} \mid$ Crotonaldehyde to Rat 4275-87-3

Table Al8. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 0.75 h after Intravenous Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Rat 4275-81-1

Table A20. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 0.75 h after Intravenous Administration of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Rat 4275-81-4

Table A21. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 2 h after Intravenous Administration of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde

Table A23. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 2 h after Intravenous Administration of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Rat 4275-57-4

Table A24. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 6 h after Intravenous Administration of [$\left.{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Rat 4188-178-1

Table A30. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 72 h after Intravenous Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to Rat 4275-40-1

Table A32. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 72 h after
Intravenous Administration of $\left[{ }^{14} \mathrm{C}\right]$ Crotonaldehyde to

Table A34. Concentration of ${ }^{14} \mathrm{C}$ in Selected Tissues 24 h after

[^0]: a_{*} indicates that tissues from this animal were examined for total ${ }^{14} \mathrm{C}$ content.
 $\mathrm{b}_{\text {Tissues }}$ obtained for extraction.
 ${ }^{c}$ Dose administered in 2% EtOH.

[^1]: ${ }^{\text {a }}$ Values are mean \pm SD for four animals.
 $b_{\text {Values are }} \pm$ mean for three animals, except where noted otherwise.
 ${ }^{\mathrm{C}}$ Values are mean \pm range for two animals.
 ${ }^{\mathrm{d}}$ First feces collection was $0-24 \mathrm{~h}$.
 ${ }^{\mathrm{e}}$ The $12-24 \mathrm{~h}$ and the $36-48 \mathrm{~h}$ breath samples were accidentally combined before analysis. The percent dose excreted for this combined sample is recorded as one sample, $36-48 \mathrm{~h}$. See data for individual rats in Tables Al - A3 in Appendix.

[^2]: ${ }^{a}$ Values are mean $+S D$ for 3 animals. See data for individual animā̄s in Tables A27 - A29 and A33 - A35 in Appendix.
 $b_{\text {Mean }} \pm$ range for 2 animals.

[^3]: ${ }_{d}{ }^{\mathrm{C}}$ Values for 1 animal.
 Tissue:blood ratio.

[^4]: ${ }^{\mathrm{a}}$ Values are mean + SD for 3 animals. See Tables A9 - Al4 for data from individual animals.
 $b_{\text {Mean }} \pm$ range for 2 animals.
 ${ }^{C}$ Value for 1 animal.

[^5]: ${ }^{\text {a }}$ Values are the mean for 3 rats \pm SD. See Tables A9 - Al4 for data from individual animals.
 $\mathrm{b}_{\text {Mean }} \pm$ range for 2 animals.
 ${ }^{\circ}$ 'Value for 1 animal.

[^6]: ${ }^{a}$ Values are mean + SD for 3 animals. See Tables Al5 - A32 for individual animal data.
 $b_{\text {Mean }}+$ range for 2 animals.
 ${ }^{C}$ Values for 1 animal.

[^7]: ${ }^{\mathrm{a}}$ Feces analyzed as one combined sample, $0-72 \mathrm{~h}$.
 ${ }^{\mathrm{b}}$ The 2-4 and $4-6 \mathrm{~h}$ samples were accidentally combined before analysis. The percent dose excreted for this combined sample is recorded as one sample.

