Experiment Number: S0545 Route: Gavage, IV Species/Strain: Rat/Sprague-Dawley # **Toxicokinetics Data Summary** Test Compound: DI-n-butyl phthalate **CAS Number:** 84-74-2 Date Report Requested: 12/27/2016 Time Report Requested: 11:23:14 Lab: Research Triangle Institute | | | - | | |---|---|----|--| | M | а | ΙД | | | | Treatment Groups (mg/kg) | | | | | | | |---------------------------------|--------------------------|-------|--------------|--------------------|-----------------------|--|--| | | 50 ^a | 100 b | 200 b | 20 IV ^b | 20 IV ° | | | | | Plasma | | | | | | | | C _{max} (ug/mL) | 21.0 | 42.0 | 123 | 44.8 | | | | | T _{max} (minute) | 20 | 30 | 60 | | | | | | Alpha (minute^-1) | | | | | 0.0593 ± 0.012 | | | | Beta (minute^-1) | | | | | 0.000710 ± 0.0011 | | | | t _{1/2(Beta)} (minute) | 379 | 290 | 279 | 163 | | | | | k ₀₁ (minute^-1) | | | | | 0.0289 ± 0.0057 | | | | k ₁₀ (minute^-1) | | | | | 0.0246 ± 0.018 | | | | k ₁₂ (minute^-1) | | | | | 0.0337 ± 0.017 | | | | k ₂₁ (minute^-1) | | | | | 0.00171 ± 0.0017 | | | | CI (mL*min/kg) | 17.9 | 12.3 | 6.25 | 11.0 | | | | | V ₁ (L/kg) | | | | | 0.407 ± 0.082 | | | | MRT (minute) | 345 | 317 | 254 | 122 | | | | | AUC _{inf} (ug/mL*min) | 2230 | 6493 | 25583 | 1450 | | | | | F (fraction) | 0.62 | 0.90 | 1.76 | | | | | **Experiment Number:** S0545 Route: Gavage, IV Species/Strain: Rat/Sprague-Dawley Toxicokinetics Data Summary Test Compound: DI-n-butyl phthalate CAS Number: 84-74-2 **Time Report Requested:** 11:23:14 **Lab:** Research Triangle Institute Date Report Requested: 12/27/2016 ## **LEGEND** Data are displayed as mean ± SEM ## MODELING METHOD & BEST FIT MODEL ^a Models 200 and 201, PCNONLIN software, SCI Software, Lexington, KY; Noncompartmental analysis. ## **ANALYTE** Mono-n-butyl phthalate ### TK PARAMETERS C_{max} = Observed or Predicted Maximum plasma (or tissue) concentration T_{max} = Time at which C_{max} predicted or observed occurs Alpha = Hybrid rate constant of the alpha phase Beta = Hybrid rate constant of the beta phase $t_{\frac{1}{2}(beta)}$ = Half-life for the beta phase k_{01} = Absorption rate constant, k_a k_{10} = Elimination rate constant from the central compartment also k_e or k_{elim} k_{12} = Distribution rate constant from first to second compartment etc. k_{21} = Distribution rate constant from second to first compartment etc. CI = Clearance, includes total clearance V_1 = Volume of distribution of the central compartment, includes V_d and V_{volume} of distribution, V_z apparent volume of distribution NCA, V_{app} apparent volume of distribution for intravenous studies MRT = Mean residence time AUC_{inf} = Area under the plasma concentration versus time curve, AUC, extrapolated to time equals infinity F = Bioavailability, absolute bioavailability ** END OF REPORT ** ^b Models 200 and 201, PCNONLIN software, SCI Software, Lexington, KY; Noncompartmental analysis. Secondary rise is plasma concentration indicate that additional factors such as enterohepatic recirculation should be considered in the analysis of the data. ^c Compartmental modeling techniques with established models or models written to simultaneously solve IV and oral data sets (PCNONLIN); 2-compartmental model using equations derived from simultaneous fitting the IV and low oral dose data (Studies AB and AC).