Experiment Number: K12007

Toxicokinetics Data Summary

Request Date: 3/12/2021

Route: Intravenous, Oral Gavage Compound & Analyte: 2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol Species/Strain: Rat/Harlan Sprague-Dawley

CAS Number: 70321-86-7

Request Time: 2:30:16 Lab: BAT

Male					
	Treatment Group (mg/kg)				
	2.25 IV ^a Blood	30 Gav ^b Blood	300 Gav ^b Blood		
(Omin prod (ng/ml)	45000 ± 1700				
C_omm_pred (ng/mL)	45900 ± 1700	286 + 104	607 + 20F		
Tmax_pred (hour)		5 1 2 + 2 0 <i>i</i>	7 80 + 2 34		
(nodi)	52400	5.18 ± 2.04	7.80 ± 2.34		
Tmax_obs (hour)	52400	2 00	1 00		
Alpha Half life (hour)	0.750 + 0.085	2.00	4.00		
Reta Half-life (hour)	0.739 ± 0.083	5.59 ± 44.5 10 8 + 26 2	8.20 ± 51.5 42 7 + 1170		
Gamma Half-life (hour)	2.10 ± 0.30	19.8 ± 20.5	42.7 ± 1170		
k_{01} (hour ⁻¹)	23.1 ± 2.0	0 260 + 2 83	0 107 + 0 6/1		
k01 Half-life (bour)		0.209 ± 2.85	0.137 ± 0.041 2 51 + 11 /		
k_{10} (hour ⁻¹)	0.646 + 0.025	2.37 ± 27.0	5.51 ± 11.4 0.0657 + 0.224		
k10 Half-life (bour)	0.040 ± 0.023	0.0850 ± 0.877 8 10 + 82 0	10.6 + 52.6		
k_{12} (hour ⁻¹)	1.07 ± 0.04	0.0702 ± 1.51	0.0127 ± 0.0564		
k_{12} (hour ⁻¹)	0.103 ± 0.034	0.0703 ± 1.31	0.0137 ± 0.0304 0.0207 + 0.589		
k_{21} (hour ⁻¹)	0.414 ± 0.102 0.0752 + 0.0061	0.0834 ± 0.307	0.0207 ± 0.389		
$k_{13} (hour^{-1})$	0.0752 ± 0.0001				
C[1 (m]/hr/kg)	0.0310 ± 0.0020				
C[2 (m]/hr/kg)	51.0 ± 0.7 5 05 + 1 58				
Cl2 (mL/m/kg)	3.03 ± 1.38				
$C[1 \in (m]/hr/kg)$	5.09 ± 0.27	2240 + 800	15400 + 22200		
$C_{12} = C_{12} = C$		2660 + 20200	2210 + 7270		
CIZ_F (IIIL/III/Kg)	40.0 + 1.8	2000 ± 30300	3210 1 7270		
$V_2 (mL/kg)$	45.0 ± 1.8 12 2 + 2 1				
$\sqrt{2}$ (mL/kg)	12.2 ± 2.1 110 + 10				
$V_{1} = (m L/kg)$	113 7 10	27200 + 222000	22400 + 717000		
$V \perp I (IIIL/Ng)$ V2 E (ml/kg)		21200 + 222000	25400 ± 717000 155000 + 4420000		
vz_i (IIIL/Kg)		31000 T 230000	155000 1 4450000		

Experiment Number: K12007		Toxicokinetics Data Summary		Request Date: 3/12/2021			
Route: Intravenous, Oral Gava	Request Time: 2:30:16						
Species/Strain: Rat/Harlan Sprague-Dawley		CAS Number: 70321-86-7		Lab: BAT			
Male							
Treatment Group (mg/kg)							
	2.25 IV ^a Blood	30 Gav ^b Blood	300 Gav ^ь Blood				
MRT (hour)	5.69 ± 0.30						
AUC_0-T (ng/mL·hr)	74300	8430	15300				
AUC_inf (ng/mL·hr)	71100 ± 1700	9270 ± 2580	19500 ± 41800				

LEGEND

MODELING METHOD & BEST FIT MODEL

^a WinNonlin three-compartment model with bolus input, first order output, and 1/Yhat² weighting (model #18); Cmax_pred based on the model prediction at 0 minutes.

^b WinNonlin two-compartment model with first order input, first order output, and 1/Yhat² weighting (model #13).

ANALYTE

2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol

TK PARAMETERS

C_Omin_pred = Fitted plasma concentration at time zero (IV only)

Cmax_obs = Observed maximum plasma concentration

Cmax_pred = Predicted maximum plasma concentration

Tmax_obs = Time at which observed Cmax occurs

Tmax_pred = Time at which predicted Cmax occurs

Alpha_Half-life = Half-life for the alpha phase

Beta_Half- life = Half-life for the beta phase

Gamma Half-life = Half-life for the gamma phase

k01 = Absorption rate constant, ka

k01_Half-life = Half-life of the absorption process to the central compartment

k10 = Elimination rate constant from the central compartment also ke or kelim

k10_Half_life = Half-life for the elimination process from the central compartment

k12 = Distribution rate constant from first to second compartment

k21 = Distribution rate constant from second to first compartment

k13 = Distribution rate constant from first to third compartment

k31 = Distribution rate constant from third to first compartment

TK PARAMETERS (cont'd)

Cl1 = Clearance of central compartment

Cl2 = Clearance of the secondary compartment

CI3 = Clearance of the tertiary compartment

Cl1_F = Apparent clearance of the central compartment, also Cl_F for gavage groups in non-compartmental model

- Cl2_F = Apparent clearance of the secondary compartment
- V1 = Volume of distribution of the central compartment, includes Vd and V volume of distribution
- V2 = Volume of distribution for the peripheral compartment
- V3 = Volume of distribution for the peripheral compartment
- V1_F = Apparent volume of distribution for the central compartment includes Vd_F, V_F for oral groups, and Vc_F
- V2_F = Apparent volume of distribution for the peripheral compartment
- MRT = Mean residence time
- AUC_0-T = Area under the plasma concentration versus time curve, AUC, from time ti (initial) to tf (final), AUClast
- AUC_inf = Area under the plasma concentration versus time curve, AUC, extrapolated to time equals infinity

TK PARAMETERS PROTOCOL

BLOOD

IV 2.25 Rat Male

Harlan Sprague Dawley male rats were intravenously administered a single 2.25 mg/kg dose of 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (DiMeEtPh-BZT). An automated blood sampling system (Culex) was used for this study. Whole blood samples were taken from n=3 animals/timepoint/per group at pre-dose and 16 timepoints at 0.0333, 0.0833, 0.167, 0.25, 0.333, 0.5, 0.75, 1, 2, 4, 8, 12, 18, 24, 48, and 72 hrs. Parent (free) was analyzed by LC-MS/MS with a lower limit of quantitation (LLOQ) of 1.0 ng/mL. Parameter estimates are reported to three significant figures with standard error (SE). Observed values do not have a reported SE.

BLOOD

Gavage 30 Rat male, 300 Rat Male

Harlan Sprague Dawley male rats were administered a single gavage dose of 30 or 300 mg/kg 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (DiMeEtPh-BZT). An automated blood sampling system (Culex) was used for this study. Whole blood samples were taken from n=3 animals/timepoint/per group at pre-dose and 16 timepoints at 0.0333, 0.0833, 0.167, 0.25, 0.333, 0.5, 0.75, 1, 2, 4, 8, 12, 18, 24, 48, and 72 hrs. Parent (free) was analyzed by LC-MS/MS with a lower limit of quantitation (LLOQ) of 1.0 ng/mL. Parameter estimates are reported to three significant figures with standard error (SE). Observed values do not have a reported SE.