Experiment Number: A32817

Test Type: Genetic Toxicology - Micronucleus

Route: Gavage

Species/Strain: Mouse/B6C3F1

G04: In Vivo Micronucleus Summary Data

Test Compound: Blue-green algae CAS Number: ALGAEBLUEGRE

Date Report Requested: 09/20/2018 Time Report Requested: 09:50:23

NTP Study Number: A32817

24 Hours **Study Duration:**

Study Methodology: Slide Scoring

Male Study Result: Negative **G04: In Vivo Micronucleus Summary Data**

Test Compound: Blue-green algae CAS Number: ALGAEBLUEGRE

Date Report Requested: 09/20/2018
Time Report Requested: 09:50:23

Route: Gavage

Species/Strain: Mouse/B6C3F1

Test Type: Genetic Toxicology - Micronucleus

Experiment Number: A32817

Tissue: Bone marrow; Sex: Male; Number of Treatments: 3; Time interval between final treatment and cell sampling: 24 h

		MN PCE/1000		% PCE
Dose (mg/kg)	N	Mean ± SEM	p-Value	Mean ± SEM
Vehicle Control ¹	5	0.30 ± 0.20		54.50 ± 2.26
625.0	5	0.80 ± 0.25	0.0658	48.60 ± 1.30
1250.0	5	0.40 ± 0.19	0.3527	50.70 ± 1.40
2500.0	5	0.50 ± 0.16	0.2397	50.20 ± 2.42
end p-Value		0.4400		
Positive Control ²	5	19.70 ± 1.58	< 0.001 *	47.10 ± 2.77
al Summary: Negative				

G04: In Vivo Micronucleus Summary Data

Test Compound: Blue-green algae CAS Number: ALGAEBLUEGRE

Date Report Requested: 09/20/2018
Time Report Requested: 09:50:23

Route: Gavage

Species/Strain: Mouse/B6C3F1

Test Type: Genetic Toxicology - Micronucleus

Experiment Number: A32817

Tissue: Bone marrow; Sex: Male; Number of Treatments: 3; Time interval between final treatment and cell sampling: 24 h

	MN PCE/1000			% PCE	
Dose (mg/kg)	N	Mean ± SEM	p-Value	Mean ± SEM	
Vehicle Control ¹	5	0.90 ± 0.29		55.20 ± 3.51	
500.0	5	1.00 ± 0.42	0.4092	65.40 ± 1.90	
1000.0	5	0.80 ± 0.46	0.5959	59.90 ± 3.23	
2000.0	5	0.80 ± 0.25	0.5959	58.10 ± 3.87	
rend p-Value		0.6450			
Positive Control ²	5	21.00 ± 1.08	< 0.001 *	49.70 ± 2.11	
rial Summary: Negative					

G04: In Vivo Micronucleus Summary Data

Test Compound: Blue-green algae CAS Number: ALGAEBLUEGRE

Date Report Requested: 09/20/2018
Time Report Requested: 09:50:23

Test Type: Genetic Toxicology - Micronucleus Route: Gavage

Species/Strain: Mouse/B6C3F1

Experiment Number: A32817

LEGEND

MN = micronucleated, PCE = polychromatic erythrocyte, NCE = normochromatic erythrocyte

CAS Number = Chemical Abstracts Service registry number

N = Number of subjects

Values given as Mean or Mean ± Standard Error Mean

Results were tabulated as the mean of the pooled results from all animals within a treatment group, plus or minus the standard error of the mean

Pairwise comparison to the concurrent control, dosed groups significant at p = 0.025/number of treatment groups; positive control value is significant at p = 0.05

Cochran-Armitage trend test, significant at p = 0.025

* Statistically significant pairwise or trend test

1: Vehicle Control: Corn Oil

2: 20.0 mg/kg Cyclophosphamide

** END OF REPORT **