ADME NTP Study S0375 Lead Ores

The contract laboratory used Alaskan lead ore concentrate for the test article. Sex/Species: adult male F344 rats. Vehicle: dosed feed, NRC-AIN-76A powder feed.

CASRN LEADORES

No radiolabel was used. Lead in feed was analyzed by an Inductively Coupled Argon Plasma Emission Spectrometer (220.35 nm). Blood samples and femurs were analyzed by a Graphite Furnace Atomic Absorption Spectrometer (283.3 nm).

Studies Performed:

 Rats were exposed to dosed feed with 0, 10, 30, or 100 ppm Alaskan lead ore concentrate for 30 days (n = 10 per group). Blood and bone (femur) was analyzed for lead on Day 30 and urine for delta-aminolevulinic acid (ALA) on Day 23.

This test article was one of four lead compounds tested together to determine the bioavailability of different chemical forms of lead. The other three test articles were lead (II) acetate, lead (II) oxide, and lead (II) sulfide (NTP studies S0195, S0248, and S0265, respectively).

All four of the test articles were sieved in an 8 inch 400 mesh US Standard Sieve. The fraction of lead ore that passed through the sieve (-400) was used in the study. For the Alaskan ore concentrate, the -400 fraction with particle sizes less than 38 microns was used in the feed preparations. The assay value for Alaskan lead ore concentrate used in formulating feed dosages was $61.1 \pm 0.6\%$ lead by weight. No significant differences were found in food consumption as a function of dose levels for any of the test chemicals.

The Alaskan lead ore concentrate was produced in mining activities as waste. Because the ore concentrate was not a single pure compound, but rather a mix of lead compounds, the small particle size fraction may not have the same lead composition as the unsieved concentrate.

Analysis of blood samples taken immediately prior to dosing and at the end of the dosing period showed substantial contamination of a significant number of the samples. For this reason, no conclusions can be made from the blood lead data (not shown).

On exposure day 23, each rat was transferred to an individual metabolism chamber with dosed feed and water for collection of urine for up to 24 hours to provide sufficient urine for analysis.

Note on Accessibility: Persons with disabilities or using assistive technology may find some documents are not fully accessible. For assistance, contact

<u>Central Data Management</u> or use our <u>contact form</u> and identify the documents/pages for which access is required. We will assist you in accessing the content of the files. NIEHS has helpful information on accessibility.

Table 1

<u>Control</u> Animal No.	ls (0 ppm) ALA (µg/mL)	<u>10 pp</u> Animal No.	<u>m Lead</u> ALA (µg/mL)	<u>30 pp</u> Animal No.	om Lead ALA (µg/mL)	<u>100 p</u> Animal No.	om Lead ALA (µg/mL)
 1D	11.0	11D	11.0	21D	10.8	31D	15.5
2D	12.3	11D 12D	12.0	210 22D	12.7	31D 32D	11.1
3D	11.7	120 13D	14.2	220 23D	12.4	32D	11.7
4D	14.6	13D 14D	12.5	230 24D	14.7	33D 34D	14.8
5D	13.2	140 15D	12.3	25D	11.8	34D 35D	10.9
6D	10.0	150 16D	14.6	26D	12.4	36D	14.6
7D	13.5	10D 17D	11.4	200 27D	11.9	30D 37D	15.9
8D	7.3	17D 18D	13.2	28D	9.7	37D 38D	10.9
9D	9.6	100 19D	11.2	29D	12.2	39D	11.6
10D	12.0	20D	10.1	30D	10.7	40D	12.7
	1.5 2.1	12 1	.3 .4		.9 .4		2.9 2.0
Control	l <u>s</u> Sp	iked Level	Fc	ound			
1	_	10 µg/mL	9.9	µg/mL			
2		20 µ g/mL		µg/mL			
3		40 µg/mL		µg/mL			

Concentration of ALA in Urine After 23 Days of Ingesting Alaskan Ore Concentrate in Feeda,b

a ALA - δ-amino levulinic acid. ^b Data shown are averages of duplicate determinations for each sample.

÷.

Uptake of Lead in Rat Femurs After 30 Days of Ingesting Alaskan Ore Concentrate in Feed

Animal	Total Feed Consumption (g)	Femur Weight (g)	Total Lead in Femur (µg)	Femur [Pb] (µg/g)	Animal	Total Feed Consumption (g)	Femur Weight (g)	Total Lead in Femur (µg)	Femur [Pb] (µg/g)
1D 2D	345.0 351.1	0.3681	0.03	0.07 0.17	21D 220	319.4 294.1	0.3409 0.3235	7.02 2.50	20.60 7.72
30	321.5	0.3014	0.02	0.08	23D	332.5	0.3726	1.46	3.93
3D 4D	296.0	0.3474	0.04	0.11	24D	333.1	0.3523	2.15	6.11
50	323.8	0.3373	0.06	0.17	25D	343.0	0.3690	3.68	9.96
5D 6D 7D 8D 9D	327.9	0.3612	0.03	0.07	26D	335.4	0.3112	2.15	6.90
7D	329.6	0.3535	0.00	0.00	27D	359.7	0.3887	1.85	4.75
8D	378.2	0.4102	0.01	0.03	28D	320.0	0.3439	1.88	5.48
9D	310.8	0.3270	0.18	0.54	29D	333.6	0.3531	3.33	9.42
10D	355.9	0.3985	0.02	0.06	30D	352.0	0.3119	3.34	10.70
Hean	334.0	0.3614	0.05	0.13	Mean	332.3	0.3467	2.94	8.6
SD CV	22.7	0.0343	0.05	0.15	SD CV	17.4	0.0246	1.53	4.6
CV	6.8	9.4874	105.5	112.3	CV	5.2	7.0975	52.2	53.2

Dose Level: 0 ppm

Dose Level: 30 ppm

Dose	Level:	10 ppm
	201011	

Dose Level: 100 ppm

Animal	Total Feed Consumption (g)	Femur Weight (g)	Total Lead in Femur (µg)	F emur [Pb] (µg/g)	Animal	Total Feed Consumption (g)	Femur Weight (g)	Total Lead in Femur (µg)	Femur [Pb] (µg/g)
110 120 130 140 150 160 170 180 190 200	352.5 345.5 330.8 344.4 343.6 340.5 361.2 338.0 364.1 319.5	0.3845 0.3923 0.3533 0.3687 0.3606 0.3635 0.3479 0.3735 0.3778 0.3312	0.70 0.40 2.31 2.49 0.26 0.51 0.40 0.38 7.48 0.56	1.81 1.02 6.53 6.75 0.71 1.41 1.15 1.03 19.80 1.70	31D 32D 33D 34D 35D 36D 37D 38D 38D 39D 40D	326.1 347.7 356.5 330.8 368.7 349.2 359.0 340.4 386.2 332.4	0.3614 0.3634 0.3660 0.3668 0.3763 0.3506 0.3629 0.3561 0.4102 0.3291	6.65 5.01 3.70 1.87 5.49 5.61 3.30 5.80 4.35 7.40	18.4 13.8 10.1 5.1 14.6 16.0 9.1 16.3 10.6 22.5
Nean	344.0	0.3653	1.55	4.2	Mean	349.7	0.3643	4.92	13.7
SD CV	12.6 3.7	0.0172 4.7154	2.12 137.1	5.6 134.3	SD CV	17.7 5.1	0.0194 5.3	1.57 31.8	4.8 35.1

Tabĺe 3

Correlations of Femur Pb Uptake with Dose

Compound	Regression Equation ^{a,b}	Correlation Coefficient (r ²)		
Lead Acetate	[Pb] _{femur} = 2.64 x Dose +1.24	0.9938		
Lead Oxide	[Pb] _{femur} = 1.64 x Dose -3.53	0.9953		
Lead Sulfide	[Pb]femur = 0.10 x Dose +0.54	0.9626		
Alaskan Ore Concentrate	[Pb] _{femur} = 0.12 x Dose +2.40	0.8733		

a Dose in µg Pb/g feed; [Pb] femur in µg Pb/g femur (fresh weight).
b Slopes of the regression equations for lead acetate and lead oxide studies were statistically different from each other and from those of the other test compounds. Slopes of the regression equations for lead sulfide and Alaskan lead ore concentrate were not statistically different from each other.