Chemical Comprehensive Analysis of Ephedra sinica Extract, Lot No. RK-3-28-1-ES for the Botanical Safety Consortium

September 15, 2022

Submitted by:
Lori L. Smith and Kristin L. Aillon
MRIGlobal
425 Dr Martin Luther King Jr Boulevard
Kansas City, MO 64110-2241

Chemical Information: Ephedra sinica Extract

CAS No.: 85940-38-1	Lot No.: RK-3-28-1-ES DTXSID No.: DTXSID801018482
	Amount Received: $1 \times \sim 153000 \mathrm{mg}$ Sample Receipt Date: 10/7/21 Appearance: Black Solid Supplier: China Medical University (Aerial parts, ground)
Post-Handling Supplier: University of Mississippi (95\% Ethano extract)	
Receipt Condition: Ambient, packaging intact Shipping Containers: Clear-glass jar Storage Condition at MRIGlobal: $-20^{\circ} \mathrm{C}$ under inert gas	

Reference Standards

Name:
CAS No.:
Supplier:
Lot No.:
Purity:
Molecular Formula:
Molecular Weight:
Structure:

Name:
CAS No.:
Supplier:
Lot No.:
Purity:
Molecular Formula:
Molecular Weight:
Structure:

Name:
CAS No.:
Supplier:
Lot No.:
Purity:
Molecular Formula:
Molecular Weight:
Structure:

Ephedrine hydrochloride (as (L)-Ephedrine)
50-98-6
USP (Rockville, MD)
R08630
99.9\% per C of A
$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO} \cdot \mathrm{HCl}$
201.69

Pseudoephedrine hydrochloride (as Pseudoephedrine)
345-78-8
USP (Rockville, MD)
R110F0
100.0\% per C of A
$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO} \cdot \mathrm{HCl}$
201.69

DL-Norephedrine hydrochloride (as Norephedrine)
154-41-6
Sigma-Aldrich (St. Louis, MO)
115K0718
$>99 \%$ per C of A
$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO} \cdot \mathrm{HCl}$
187.67

Name:
CAS No.:
Supplier:
Lot No.:
Purity:
Molecular Formula:
Molecular Weight:
Structure:

Name:
CAS No.:
Supplier:
Lot No.:
Purity:
Molecular Formula:
Molecular Weight:
Structure:

Name:
CAS No.:
Supplier:
Lot No.:
Purity:
Molecular Formula:
Molecular Weight:
Structure:
(D)-Catechin

154-23-4
USP (Rockville, MD)
R13070
97\% per C of A
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6}$
290.27

Name:
CAS No.:
Supplier:
Lot No.:
Purity:
Molecular Formula:
Molecular Weight:
Structure:

Quinoline
91-22-5
Sigma-Aldrich (St. Louis, MO)
BCBX3571
98.7\% per C of A
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$
129.16

Figure 1. Ephedra sinica extract solution preparation flowchart.

Table 1. UPLC-UV-CAD/HRMS System

Instrumentation:	Acquity UPLC with additional post-column inverse gradient Acquity UPLC pump (Waters Corporation; Milford, MA)
Liquid Chromatograph:	Acquity PDA Detector (Waters Corporation; Milford, MA)
Photodiode Array Detector (UV):	Corona Veo RS (Thermo Fisher Scientific; Waltham, MA)
Charged Aerosol Detector (CAD):	Xevo G2-XS (Waters Corporation; Milford, MA)
High Resolution Mass Spectrometer (HRMS):	

Table 2. Identification and CAD Estimation - Acquisition Parameters

UPLC Parameters:	
Column:	Avantor ACE Excel C18-PFP, $1.7 \mu \mathrm{~m}$, 100x 2.1 mm (Advanced Chromatography Technologies, UK)
Autosampler Temperature:	$6^{\circ} \mathrm{C}$
Column Temperature:	$30^{\circ} \mathrm{C}$
Injection Volume:	$10 \mu \mathrm{~L}$
Flow Rate:	$0.3 \mathrm{~mL} / \mathrm{min}$
Mobile Phase A:	1\% (v/v) Acetic Acid in Water
Mobile Phase B:	1\% (v/v) Acetic Acid in Acetonitrile
Gradient Elution Profiles:	Forward: 0\% B held for 0.5 min ; ramp to 10% B over 4 min ; ramp to 55% B over 45 min ; ramp to 100% B over 18 min and hold for 2.5 min ; decreased to 0% B in 1 min and held for 4 min . Inverse: 100% B held for 0.5 min ; decrease to 90% B over 4 min ; decrease to 45% B over 45 min ; decrease to 0% B over 18 min and held for 2.5 min ; ramped to 100% B in 1 min and held for 4 min .
Run Time:	75 minutes
UV (PDA) Parameters:	
2D Channel Wavelength:	254 nm
3D Channel Wavelength Range:	190 to $400 \mathrm{~nm}, 1.2 \mathrm{~nm}$ resolution
CAD Parameters:	
Sampling Rate:	10 points/sec
Scale Factor:	1000
Evaporation Temperature:	$35^{\circ} \mathrm{C}$
Scale/Power Function Value:	$20 \mathrm{pA} / 1.0$
Nitrogen	57.5 psi
HRMS Parameters:	
Ionization/Acquisition Mode:	ESI+; MSe sensitivity mode
Acquisition Range:	m/z 100 to m/z 1200
Scan Time:	0.3 s
Lock Mass:	Leucine encephalin ($\mathrm{m} / \mathrm{z} 278.1135,556.2766$; Scan for 0.200 s , interval: 45 s)
Capillary Voltage:	2.5 kV
Cone Voltage:	40 V
Collision Energy:	Low CE: 6 eV High CE: $20-30 \mathrm{eV}$
Source Temperature:	$110^{\circ} \mathrm{C}$
Desolvation Temperature:	$250^{\circ} \mathrm{C}$
Cone Gas Flow:	$50 \mathrm{~L} / \mathrm{h}$
Desolvation Gas Flow:	$600 \mathrm{~L} / \mathrm{h}$
Data Acquisition System:	UNIFI version 1.9.4

Identification

Figure 2. Partial chromatograms from the UPLC-UV-CAD/HRMS analysis of Ephedra sinica extract showing the majority of analyte peaks from the $75-\mathrm{min}$ analysis. Peak numbers correlate with results presented in Table 3.

Table 3. Identification Summary for Ephedra sinica Extract Components

Peak Number	Retention Time (min)	Area (\%) ${ }^{\text {a }}$	$\begin{gathered} \hline \text { Observed } \\ \text { Neutral } \\ \text { Mass }^{\text {b }} \\ \text { (Da) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Mass } \\ & \text { Error } \\ & \text { (mDa) } \end{aligned}$	Component ID	CAS	Molecular Formula	Structure	Confidence Level ${ }^{c-h}$	Additional Comments
1	5.31	10.29	151.0994	-0.3	Norephedrine	14838-15-4	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}$		1	Standard Addition Quantitation (see Table 12).
2	5.65	9.38	151.0997	0.0	Norpseudoephedrine	492-39-7	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}$		1	Standard Addition Quantitation (see Table 12).
3	5.89	1.28	313.1536	-14.2	Armepavine	524-20-9	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3}$		3	CAD Estimation (see Table 4).
4	6.28	37.88	165.1155	0.1	(L)-Ephedrine	299-42-3	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}$		1	Standard Addition Quantitation (see Table 12).
5	6.73	16.21	165.1157	0.4	Pseudoephedrine	90-82-4	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}$		1	Standard Addition Quantitation (see Table 12).
6	7.35	8.19	179.1315	0.5	N -methylephedrine	552-79-4	$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}$		1	N-methylephedrine Standard Addition Quantitation (see Table 12). Possible coelution with Pseudomethylephedrine.

$7{ }^{\text {i }}$	8.12	1.16	290.0798	0.8	(D)-Catechin	154-23-4	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{6}$		1	(D)-Catechin Standard Addition Quantitation (see Table 12). Possible coelution with Epicatechin.
8	8.28	1.28	$\begin{gathered} \mathrm{m} / \mathrm{z} \\ 265.1553 \end{gathered}$	NA	Unknown	NA	NA	NA	5	Singly charged ion observed based on isotope distribution
9	9.39	3.62	$\begin{gathered} \mathrm{m} / \mathrm{z} \\ 220.0611 \end{gathered}$	0.63	Unknown	NA	$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{4}$	NA	4	NA
$10 \mathrm{~A}^{\mathrm{j}}$	11.89	1.33	274.0813	-2.8	Afzelechin and/or Epiafzelechin	$\begin{gathered} 2545-00-8 \\ \text { and/or } \\ 36801-69-1 \end{gathered}$	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$		3	CAD Estimation (see Table 4); coelutes with Peak 10B.
$10 \mathrm{~B}^{\mathrm{j}}$	11.99	1.33	$\begin{gathered} m / z \\ 565.1589 \end{gathered}$	NA	Unknown	NA	NA	NA	5	Singly charged ion observed based on isotope distribution; coelutes with Peak 10A.
11	13.63	3.70	$\begin{gathered} 416.1004 \\ \text { and } \\ 578.1644 \end{gathered}$	$\begin{gathered} -10.3 \\ \text { and } \\ 0.8 \end{gathered}$	Apigenin-5-rhamnoside and Vitexin rhamnoside	Unassigned and 32426-34-9	$\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{9} \\ \text { and } \\ \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{14} \end{gathered}$		3	CAD Estimation (see Table 4). Peak 11 has a leading shoulder indicating the presence of coeluting compounds.

${ }^{\mathrm{a}}$ Area $(\%)=($ Peak Area $/$ Total Peak Area) $\times 100$.
${ }^{\mathrm{b}}$ Reported observed mass-to-charge (m / z) ratio when peak identification was not definitive (Confidence Levels 4 and 5).
${ }^{\text {c }}$ Assignment based on published guidelines. ${ }^{4}$
${ }^{d}$ Level 1: Confirmed structure - Matched retention time, accurate mass, and fragmentation pattern to reference standard.
${ }^{\mathrm{e}}$ Level 2: Proposed structure - Matched accurate mass and fragmentation pattern with library data or published literature; indicates single possible structure.
${ }^{\text {f }}$ Level 3: Tentative structure - Matched accurate mass and some fragments yet insufficient evidence to assign single structure (i.e., positional isomers).
${ }^{9}$ Level 4: Unequivocal molecular formula - Unambiguous match to molecular formula without fragmentation information.
${ }^{\mathrm{h}}$ Level 5: Exact mass of interest - Accurate mass without sufficient evidence to assign molecular formula or structure.
${ }^{i}$ Low abundance ($\leq 0.30 \%$) peak eluting near (D)-Catechin identified as Epicatechin.
${ }^{j}$ Peak 10A/10B are unresolved chromatographic peaks with unique mass spectral profiles; Area \% is reported as a total peak area.
${ }^{\text {k Peak }} 16$ (Retention Time $\sim 57.00 \mathrm{~min}$) is not displayed in partial chromatogram presented in Figure 2.

Estimation of Concentration Using CAD Response

Quantitation of Ephedra sinica extract components identified by accurate mass measurements and library searching (i.e., assigned Confidence Level 3; no components were assigned Confidence Level 2) was attempted using CAD responses as an estimate based on (D)-catechin response and concentration (i.e., single-point calibration). The mean CAD peak area ratio of the component to (D)catechin was multiplied by the (D)-catechin concentration determined by standard addition quantitation ($0.351 \%(\mathrm{w} / \mathrm{w})$; see Table 8). CAD estimated results are summarized in Table 4.

Table 4. CAD Estimated Results Summary for Ephedra sinica Extract

Compound	CAS	Determined Conc. Replicate 1 (\% w/w)	Determined Conc. Replicate 2 (\% w/w)	Determined Conc. Replicate 3 (\% w/w)	$\begin{gathered} \text { Mean } \pm \text { SD } \\ \text { (RSD, \%) } \end{gathered}$
Armepavine	524-20-9	0.321	0.270	0.332	$\begin{gathered} 0.308 \pm 0.033 \\ (10.7 \%) \\ \hline \end{gathered}$
Afzelechin/Epiafzelechin ${ }^{\text {a }}$	$\begin{gathered} 2545-00-8 \\ \text { and/or } \\ 36801-69-1 \end{gathered}$	0.190	0.193	0.249	$\begin{gathered} 0.211 \pm 0.033 \\ (15.6 \%) \end{gathered}$
```Apigenin-5- rhamnoside and Vitexin rhamnoside and Kaempferol-3-O- rhamnoside```	Unassigned and 32426-34-9 and Unassigned	0.360	0.355	0.383	$\begin{gathered} 0.366 \pm 0.015 \\ (4.1 \%) \end{gathered}$
Herbacetin/Quercetin	$\begin{gathered} 527-95-7 \\ \text { and/or } \\ 117-39-5 \end{gathered}$	0.222	0.222	0.243	$\begin{gathered} 0.229 \pm 0.012 \\ (5.2 \%) \end{gathered}$

Table 5. Standard Addition Quantitation - Acquisition Parameters

UPLC Parameters:	
Column:	Avantor ACE Excel C18-PFP, $1.7 \mu \mathrm{~m}, 100 \times 2.1 \mathrm{~mm}$ (Advanced Chromatography Technologies, UK)
Autosampler Temperature:	$6^{\circ} \mathrm{C}$
Column Temperature:	$30^{\circ} \mathrm{C}$
Injection Volume:	$1 \mu \mathrm{~L}$
Flow Rate:	$0.3 \mathrm{~mL} / \mathrm{min}$
Mobile Phase A:	1\% (v/v) Acetic Acid in Water
Mobile Phase B:	1\% (v/v) Acetic Acid in Acetonitrile
Gradient Elution Profiles:	Forward: 0\% B held for 0.5 min ; ramp to $5 \%$ B over 4 min ; ramp to $15 \%$ B over 9 min ; decreased to $0 \% \mathrm{~B}$ in 0.5 min and held for 1 min .   Inverse: $100 \%$ B held for 0.5 min ; decrease to $95 \%$ B over 4 min ; decrease to $85 \%$ B over 9 min ; ramped to $100 \%$ B in 0.5 min and held for 1 min.
Run Time:	15 minutes
Retention Time (min):	Norephedrine: 7.00   Quinoline: 7.30   Norpseudoephedrine: 7.59   (L)-Ephedrine: 9.20   Pseudoephedrine: 9.85   N-Methylephedrine: 10.95   (D)-Catechin: 12.85
UV (PDA) Parameters:	
2D Channel Wavelength:	254 nm
3D Channel Wavelength Range:	190 to $400 \mathrm{~nm}, 1.2 \mathrm{~nm}$ resolution
CAD Parameters:	
Sampling Rate:	10 points/sec
Scale Factor:	1000
Evaporation Temperature:	$35^{\circ} \mathrm{C}$
Scale/Power Function Value:	$20 \mathrm{pA} / 1.0$
Nitrogen	57.5 psi
HRMS Parameters:	
Ionization/Acquisition Mode:	ESI+; MSe sensitivity mode
Acquisition Range:	$\mathrm{m} / \mathrm{z} 100$ to $\mathrm{m} / \mathrm{z} 1200$
Scan Time:	0.3 s
Lock Mass:	Leucine encephalin (m/z $278.1135,556.2766$; Scan for 0.300 s , interval: 30 s )
Capillary Voltage:	2.5 kV
Cone Voltage:	40 V
Collision Energy:	Low CE: 6 eV High CE: $20-30 \mathrm{eV}$
Source Temperature:	$110^{\circ} \mathrm{C}$
Desolvation Temperature:	$250^{\circ} \mathrm{C}$
Cone Gas Flow:	$50 \mathrm{~L} / \mathrm{h}$
Desolvation Gas Flow:	$600 \mathrm{~L} / \mathrm{h}$
Data Acquisition System:	UNIFI version 1.9.4

## Standard Addition Quantitation

Standard addition calibration solutions were prepared as presented in Figure 1. Individual stock standard solutions of ephedrine hydrochloride (as (L)-ephedrine), pseudoephedrine hydrochloride (as pseudoephedrine), DL-norephedrine hydrochloride (as norephedrine), norpseudoephedrine, N -methylephedrine, (D)-catechin, quinoline, and 1-phenylpropane-1,2dione were prepared at $\sim 1 \mathrm{mg} / \mathrm{mL}$, diluted in $95 \%$ ethanol. Mixed component spiking solutions were prepared at three concentrations in $50 \%(\mathrm{v} / \mathrm{v})$ aqueous ethanol $(1.0,2.5$, and $5.0 \mu \mathrm{~g} / \mathrm{mL}$ for each component) for quantitation by standard addition methodology.

The linear regression equation relating peak areas of the standard addition calibration solutions to their additional analyte concentration was determined for data without weighting. A 4-point calibration curve with triplicate standards at the lower (unspiked) and upper limits of the concentration range was used for quantitation. The concentration of each analyte in the test article solution was calculated by extrapolation of the linear regression equation to the x -axis, application of appropriate dilution factor(s), and unit conversion to express results as a weight-to-weight percentage.

Representative extracted ion chromatograms, standard addition calibration curves, and quantitation summary tables are presented in Figures 3-12 and Tables 6-12.
A.

B.


Figure 3. Extracted ion chromatograms ( $m / z$ 134.0964) for diluent blank (black), unspiked extract (A: Set A and B: Set C; red), and spiked extract ( $\sim 250 \mathrm{ng} / \mathrm{mL}$ added; blue).


Figure 4. Extracted ion chromatograms ( $\mathrm{m} / \mathrm{z}$ 148.1126) for diluent blank (black), unspiked extract (Set B; red), and spiked extract ( $\sim 100 \mathrm{ng} / \mathrm{mL}$ added; blue).


Figure 5. Extracted ion chromatograms ( $\mathrm{m} / \mathrm{z}$ 180.1383) for diluent blank (black), unspiked extract (Set A; red), and spiked extract ( $\sim 100 \mathrm{ng} / \mathrm{mL}$ added; blue).


Figure 6. Extracted ion chromatograms ( $\mathrm{m} / \mathrm{z} 291.0863$ ) for diluent blank (black), unspiked extract (Set A; red), and spiked extract ( $\sim 100 \mathrm{ng} / \mathrm{mL}$ added; blue).

## Standard Addition Quantitation - Calibration



Figure 7. Representative standard addition calibration curve - Norephedrine

Table 6. Norephedrine Quantitative Results Summary for Ephedra sinica Extract

Extract   Replicate	Subsample   $(\mathbf{m g})$	Slope	Y-Intercept	Correlation   Coefficient   $\left(\mathbf{R}^{2}\right)$	X-   Intercept $^{\mathbf{a}}$	Determined   Concentration   $(\% \mathbf{b}$   $(\% / \mathbf{w})$		
BSC-EtOH-1	11.058	45.104	177947	0.6379	3945.3	0.198		
BSC-EtOH-2	10.486	28.108	169511	0.5935	6030.8	0.320		
BSC-EtOH-3	10.276	32.949	155967	0.5393	4733.6	0.256		
						Mean $\pm$ SD   $(\%$ RSD $)$		$0.258 \pm 0.061$
:---:								
$(23.6 \%)$								

${ }^{a}$ X-Intercept = Absolute value of (Y-Intercept/Slope).
${ }^{\mathrm{b}}$ Determined Conc. $(\% \mathrm{w} / \mathrm{w})=$ X-Intercept $\times(500 \mu \mathrm{~L} / 450 \mu \mathrm{~L}) \times(5 \mathrm{~mL} / 2.5 \mathrm{~mL}) \times(2.5 \mathrm{~mL} /$ Subsample in $\mathrm{mg}) \times(1000 \mathrm{mg} / 1 \mathrm{~g}) \times\left(1 \mathrm{~g} / 10^{9} \mathrm{ng}\right) \times 100$.


Figure 8. Representative standard addition calibration curve - Norpseudoephedrine

Table 7. Norpseudoephedrine Quantitative Results Summary for Ephedra sinica Extract

Extract   Replicate	Subsample   $(\mathbf{m g})$	Slope	Y-Intercept	Correlation   Coefficient   $\left(\mathbf{R}^{2}\right)$	$\mathbf{X}-$   Intercept $^{\mathbf{a}}$	Determined   Concentration   $(\% \mathbf{b}$   $(\% / \mathbf{w})$
BSC-EtOH-1	11.058	81.521	13194	0.9887	161.85	0.366
BSC-EtOH-2	10.486	77.741	12398	0.9795	159.47	0.380
BSC-EtOH-3	10.276	73.963	12049	0.9773	162.91	0.396
Mean $\pm$ SD   $(\%$ RSD $)$						$0.381 \pm 0.015$   $(3.9 \%)$

${ }^{2} \mathrm{X}$-Intercept $=$ Absolute value of ( Y -Intercept/Slope ).
${ }^{\mathrm{b}}$ Determined Conc. $(\% \mathrm{w} / \mathrm{w})=$ X-Intercept $\times(500 \mu \mathrm{~L} / 10 \mu \mathrm{~L}) \times(5 \mathrm{~mL} / 2.5 \mathrm{~mL}) \times(2.5 \mathrm{~mL} /$ Subsample in mg$)$
$\times(1000 \mathrm{mg} / 1 \mathrm{~g}) \times\left(1 \mathrm{~g} / 10^{9} \mathrm{ng}\right) \times 100$.


Figure 9. Representative standard addition calibration curve - (L)-Ephedrine

Table 8. (L)-Ephedrine Quantitative Results Summary for Ephedra sinica Extract

Extract Replicate	Subsample (mg)	Slope	Y-Intercept	Correlation Coefficient $\left(\mathrm{R}^{2}\right)$	X-   Intercept ${ }^{\text {a }}$	$\begin{gathered} \text { Determined } \\ \text { Concentration } \\ (\% \mathrm{w} / \mathrm{w}) \end{gathered}$
BSC-EtOH-1	11.058	129.00	13494	0.9988	104.60	2.36
BSC-EtOH-2	10.486	111.14	12223	0.9939	109.97	2.62
BSC-EtOH-3	10.276	99.776	11849	0.9956	$\begin{gathered} 118.76 \\ \hline \text { Mean } \pm \text { SD } \\ (\% \mathrm{RSD}) \\ \hline \end{gathered}$	2.89
						$\begin{gathered} 2.62 \pm 0.27 \\ (10.1 \%) \end{gathered}$

a X-Intercept = Absolute value of ( Y -Intercept/Slope).
${ }^{\mathrm{b}}$ Determined Conc. $(\% \mathrm{w} / \mathrm{w})=$ X-Intercept $\times(500 \mu \mathrm{~L} / 50 \mu \mathrm{~L}) \times(500 \mu \mathrm{~L} / 10 \mu \mathrm{~L}) \times(5 \mathrm{~mL} / 2.5 \mathrm{~mL}) \times(2.5$ $\mathrm{mL} /$ Subsample in mg$) \times(1000 \mathrm{mg} / 1 \mathrm{~g}) \times\left(1 \mathrm{~g} / 10^{9} \mathrm{ng}\right) \times 100$.


Figure 10. Representative standard addition calibration curve - Pseudoephedrine

Table 9. Pseudophedrine Quantitative Results Summary for Ephedra sinica Extract

Extract   Replicate	Subsample   $(\mathbf{m g})$	Slope	Y-Intercept	Correlation   Coefficient   $\left(\mathbf{R}^{2}\right)$	X-   Intercept	Determined   Concentration   $(\%$ w/w)				
BSC-EtOH-1	11.058	138.80	6269.2	0.9949	45.166	1.02				
BSC-EtOH-2	10.486	121.91	7804.4	0.9895	64.015	1.53				
BSC-EtOH-3	10.276	113.62	5776.4	0.9927	50.837	1.24				
						Mean $\pm$ SD   $(\%$ RSD $)$				$1.26 \pm 0.26$   $(20.2 \%)$

${ }^{\text {a }}$ X-Intercept = Absolute value of (Y-Intercept/Slope).
${ }^{\mathrm{b}}$ Determined Conc. $(\% \mathrm{w} / \mathrm{w})=$ X-Intercept $\times(500 \mu \mathrm{~L} / 50 \mu \mathrm{~L}) \times(500 \mu \mathrm{~L} / 10 \mu \mathrm{~L}) \times(5 \mathrm{~mL} / 2.5 \mathrm{~mL}) \times(2.5$ $\mathrm{mL} /$ Subsample in mg$) \times(1000 \mathrm{mg} / 1 \mathrm{~g}) \times\left(1 \mathrm{~g} / 10^{9} \mathrm{ng}\right) \times 100$.


Figure 11. Representative standard addition calibration curve - N-Methylephedrine

Table 10. N-Methylephedrine Quantitative Results Summary for Ephedra sinica Extract

Extract   Replicate	Subsample   $(\mathbf{m g})$	Slope	Y-Intercept	Correlation   Coefficient   $\left.\mathbf{( R}^{2}\right)$	$\mathbf{X -}$   Intercept $^{\mathbf{a}}$	Determined   Concentration   $(\%$ w/w)
BSC-EtOH-1	11.058	2093.2	148051	0.9989	70.729	0.160
BSC-EtOH-2	10.486	2080.9	130116	0.9922	62.528	0.149
BSC-EtOH-3	10.276	1851.6	129970	0.9990	70.192	0.171

[^0]

Figure 12. Representative standard addition calibration curve - (D)-Catechin

Table 11. (D)-Catechin Quantitative Results Summary for Ephedra sinica Extract

Extract Replicate	Subsample (mg)	Slope	Y-Intercept	Correlation Coefficient $\left(\mathrm{R}^{2}\right)$	XIntercept ${ }^{\text {a }}$	Determined Concentration ${ }^{\text {b }}$ (\% w/w)
BSC-EtOH-1	11.058	184.53	29700	0.9968	160.95	0.364
BSC-EtOH-2	10.486	182.49	23847	0.9828	130.67	0.312
BSC-EtOH-3	10.276	157.51	24467	0.9960	155.34	0.378
$\begin{gathered} \text { Mean } \pm \text { SD } \\ (\% R S D) \\ \hline \end{gathered}$						$\begin{gathered} 0.351 \pm 0.035 \\ (10.0 \%) \\ \hline \end{gathered}$

[^1]Table 12. Standard Addition Quantitative Results Summary for Ephedra sinica Extract

Reference Compound	CAS	Determined Conc. Replicate 1 (\% w/w)	Determined Conc.   Replicate 2   (\% w/w)	Determined Conc.   Replicate 3   (\% w/w)	$\begin{aligned} & \text { Mean } \pm \text { SD } \\ & \text { (RSD, \%) } \end{aligned}$
Norephedrine	14838-15-4	0.198	0.320	0.256	$\begin{gathered} 0.258 \pm 0.061 \\ (23.6 \%) \\ \hline \end{gathered}$
Quinoline	91-22-5	ND	ND	ND	ND
Norpseudoephedrine	492-39-7	0.366	0.380	0.396	$\begin{gathered} 0.381 \pm 0.015 \\ (3.9 \%) \\ \hline \end{gathered}$
(L)-Ephedrine	299-42-3	2.36	2.62	2.89	$\begin{gathered} 2.62 \pm 0.27 \\ (10.1 \%) \\ \hline \end{gathered}$
Pseudoephedrine	90-82-4	1.02	1.53	1.24	$\begin{gathered} 1.26 \pm 0.26 \\ (20.2 \%) \\ \hline \end{gathered}$
N-Methylephedrine ${ }^{\text {a }}$	552-79-4	0.160	0.149	0.171	$\begin{gathered} 0.160 \pm 0.011 \\ (6.9 \%) \end{gathered}$
(D)-Catechin	154-23-4	0.364	0.312	0.378	$\begin{gathered} 0.351 \pm 0.035 \\ (10.0 \%) \\ \hline \end{gathered}$

[^2]
[^0]:    ${ }^{\mathrm{a}} \mathrm{X}$-Intercept $=$ Absolute value of ( Y -Intercept/Slope).
    ${ }^{\mathrm{b}}$ Determined Conc. $(\% \mathrm{w} / \mathrm{w})=$ X-Intercept $\times(500 \mu \mathrm{~L} / 10 \mu \mathrm{~L}) \times(5 \mathrm{~mL} / 2.5 \mathrm{~mL}) \times(2.5 \mathrm{~mL} /$ Subsample in mg$)$ $\times(1000 \mathrm{mg} / 1 \mathrm{~g}) \times\left(1 \mathrm{~g} / 10^{9} \mathrm{ng}\right) \times 100$.

[^1]:    ${ }^{\mathrm{a}}$ X-Intercept = Absolute value of ( Y -Intercept/Slope).
    ${ }^{\mathrm{b}}$ Determined Conc. $(\% \mathrm{w} / \mathrm{w})=$ X-Intercept $\times(500 \mu \mathrm{~L} / 10 \mu \mathrm{~L}) \times(5 \mathrm{~mL} / 2.5 \mathrm{~mL}) \times(2.5 \mathrm{~mL} /$ Subsample in mg$)$ $\times(1000 \mathrm{mg} / 1 \mathrm{~g}) \times\left(1 \mathrm{~g} / 10^{9} \mathrm{ng}\right) \times 100$.

[^2]:    ND = No response detected above baseline noise in undiluted extract solutions.
    ${ }^{\text {a }}$ Possible coelution with pseudomethylephedrine.

