Experiment Number: S0546 Species/Strain: Rat/Sprague-Dawley Route: Gavage, IV ## **Toxicokinetics Data Summary** Test Compound: 2,4-Dichlorophenoxyacetic Acid **CAS Number:** 94-75-7 Date Report Requested: 11/09/2016 Time Report Requested: 13:59:47 Lab: Research Triangle Institute | M | al | e | | |---|----|---|--| | | | | | | | Treatment Groups (mg/kg) | | | | | | | | |---------------------------------|--------------------------|-------|--------|--------|-------------------|--|--|--| | | 1.5 ª | 1.5 b | 3.56 b | 7 b | 2 IV ^b | | | | | | Plasma | | | | | | | | | Comin(pred) (ug/mL) | | | | | 33.4 | | | | | C _{max} (ug/mL) | | 3.73 | 11.0 | 12.0 | | | | | | T _{max} (minute) | | 30 | 30 | 10 | | | | | | Alpha (min^-1) | 0.223 ± 0.0082 | | | | | | | | | Beta (min^-1) | 0.0200 ± 0.0021 | | | | | | | | | t _{1/2(Beta)} (minute) | | 134 | 1066 | 176 | 61.9 | | | | | k ₀₁ (min^-1) | 0.0330 ± 0.0058 | | | | | | | | | k ₁₀ (min^-1) | 0.0461 ± 0.0074 | | | | | | | | | k ₁₂ (min^-1) | 0.0998 ± 0.049 | | | | | | | | | k ₂₁ (min^-1) | 0.0968 ± 0.031 | | | | | | | | | CI (mL/min/kg) | | | | | 2.02 | | | | | CI _{1(F)} (mL/min/kg) | | 2.92 | | | | | | | | V ₁ (L/kg) | 0.0559 ± 0.0091 | | | | | | | | | MRT (minute) | | 180.0 | 1417.0 | 290.0 | 61.7 | | | | | AUC _{inf} (ug/mL*min) | | 513.0 | 4821.0 | 2959.0 | 992 | | | | | F (fraction) | | 0.69 | | | | | | | Experiment Number: S0546 Toxicokinetics Data Summary Test Compound: 2,4-Dichlorophenoxyacetic Acid Date Report Requested: 11/09/2016 Time Report Requested: 13:59:47 Species/Strain: Rat/Sprague-Dawley CAS Number: 94-75-7 Lab: Research Triangle Institute **LEGEND** Route: Gavage, IV Data are displayed as mean ± SEM ## MODELING METHOD & BEST FIT MODEL ^a Analyzed using compartmental modeling techniques with established models or models written to simultaneously solve iv and oral data sets (PCNONLIN software, SCI Software, Lexington, KY); The rat data were best fit using a 2-compartment model with simultaneous solution of the iv (Study X) and low oral (Study Y) data. ^b Models 200 and 201, PCNONLIN software, SCI Software, Lexington, KY; noncompartmental model (not best fit) ## **ANALYTE** 2,4-Dichlorophenoxyacetic acid ## TK PARAMETERS $C_{0min(pred)}$ = Fitted plasma concentration at time zero (IV only) C_{max} = Observed or Predicted Maximum plasma (or tissue) concentration T_{max} = Time at which C_{max} predicted or observed occurs Alpha = Hybrid rate constant of the alpha phase Beta = Hybrid rate constant of the beta phase $t_{\frac{1}{2}(beta)}$ = Half-life for the beta phase k_{01} = Absorption rate constant, k_a k_{10} = Elimination rate constant from the central compartment also k_e or k_{elim} k_{12} = Distribution rate constant from first to second compartment etc. k_{21} = Distribution rate constant from second to first compartment etc. CI = Clearance, includes total clearance $Cl_{_{1(F)}}$ = Apparent clearance of the central compartment, also $Cl_{(F)}$ for gavage groups in non-compartmental model V_1 = Volume of distribution of the central compartment, includes V_d and V_{volume} of distribution, V_z apparent volume of distribution NCA, V_{app} apparent volume of distribution for intravenous studies MRT = Mean residence time AUC inf = Area under the plasma concentration versus time curve, AUC, extrapolated to time equals infinity F = Bioavailability, absolute bioavailability ** END OF REPORT **