NCTR PROTOCOL E0219001

TWO YEAR CHRONIC TOXICOLOGY STUDY OF BISPHENOL A (BPA) [CAS # 80-05-7] ADMINISTERED BY GAVAGE TO SPRAGUE-DAWLEY RATS (NCTR) FROM GESTATIONAL DAY 6 UNTIL BIRTH AND DIRECTLY TO F1 PUPS FROM POSTNATAL DAY (PND) 1; CONTINUOUS AND STOP DOSE (PND 21) EXPOSURES

STATISTICAL REPORT

ANALYSIS OF TERMINAL SACRIFICE DEVELOPMENTAL MEASURES DATA

PREPARED BY

BETH E. JULIAR DIVISION OF BIOINFORMATICS AND BIOSTATISTICS

FOR

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH 3900 NCTR ROAD JEFFERSON, ARKANSAS 72079

Signatures

Report prepared by Statistician:

Beth E. Juliar, M.A., M.S., Division of Bioinformatics and Biostatistics/NCTR/FDA

Report reviewed by Statistician:

Paul Felton, M.S., Division of Bioinformatics and Biostatistics /NCTR/FDA

Statistical Team Leader:

Paul Felton, M.S., Division of Bioinformatics and Biostatistics /NCTR/FDA

Date

Date

Date

Table of Contents

1.	Objec	tives1
	1.1	Project Objectives
	1.2	Analysis Objectives
2.	Exper	imental Design1
3.	Statis	tical Methods1
4.	Resul	ts2
	4.1	BPA Treatments Stop-Dose Arm
	4.2	BPA Treatments Continuous Dose Arm
	4.3	EE ₂ Treatments Continuous Dose
5	Concl	usions 3
5.	5.1	BPA Treatments Stop-Dose Arm
	5.2	BPA Treatments Continuous Dose Arm
	5.3	EE ₂ Treatments Continuous Dose
App	endice	-s4
A. S	tatistic	al Tables4
a)	BPA '	Treatments Stop Dose Arm5
b)	BPA '	Treatments Continuous Dose Arm7
c)	EE ₂ T	reatments Continuous Dose
B. D	ata	
Qua	lity Co	ontrol

Statistical Analysis of Terminal Sacrifice Developmental Measures Data

1. Objectives

1.1 Project Objectives

The goal of this two year chronic study is to characterize the long term toxicity of orally administered BPA, including developmental exposure, in the NCTR Sprague-Dawley (CD) rat over a broad dose range.

1.2 Analysis Objectives

The goal of this analysis is to evaluate the effects of exposure to BPA in Sprague-Dawley rats on terminal sacrifice developmental measure data.

2. Experimental Design

The study design consisted of first generation female and male rats (F₀) for up to 600 mating pairs randomized to treatment groups in 5 loads. The goal of the F₀ matings was to obtain 352 study litters, 50 per dose group for vehicle controls and five BPA dose groups, 2.5, 25, 250, 2500, and 25000 μ g/kg bw/day, and 26 for each of two EE₂ dose groups, 0.05 and 0.5 μ g/kg bw/day. Dams were dosed daily from gestation day (GD) 6 until parturition. Dosing was by gavage for F₀ dams and F₁ pups, the second study generation. Litters were culled to 10 pups on PND 1.There were two study dosing arms of F₁ animals, daily continuous dosing to termination, and daily dose stopped at post-natal day (PND) 21. There was a vehicle control group and five BPA groups for each study dosing arm, and EE₂ daily dose groups for the continuous dosing arm only. From the F₁ litters, pups were allocated at weaning, PND 21, to the interim (1 year) and terminal (2 year) sacrifices for the core study. For vehicle and BPA terminal sacrifice groups, there were 50 pups each; for EE₂ terminal sacrifice and all the interim sacrifice groups, there were 20-26 pups each. Pups within litter and sex were assigned to different dosing arms and sacrifice times.

Developmental Measure Data

Vaginal opening and vaginal cytology data were collected from 13 cages randomly selected from each treatment group in the 2 year terminal sacrifice arm. The selected females were monitored from PND 22 until occurrence of vaginal opening for PND endpoint in the BPA stop dose arm, and for body weight and PND endpoints in the BPA continuous dose arm and EE₂ dose.

3. Statistical Methods

Statistical analyses were performed separately for the BPA study arms, stop dose and continuous dose, and for the EE₂ continuous dose. Because pups within litter and sex were assigned to different dosing arms and sacrifice times, litter correlation is not a consideration for this study. Pairwise comparison tests were two-sided, and all tests were conducted at the 0.05 significance level. Tests of trend, increasing treatment effect with increasing dose, were performed for the BPA and vehicle control groups.

Developmental endpoints were age at vaginal opening for the BPA stop dose study arm, and age and body weight at vaginal opening for the BPA and EE_2 continuous dose arm. Body weight was not analyzed for the stop dose arm because body weight was not collected at vaginal opening for 31 animals. The missing values in the stop dose arm and other sporadic missing values in the continuous dose have been accounted for in protocol deviations.

E0219001 Analysis of Terminal Sacrifice Developmental Measures Data

Analyses of age and body weight at occurrence of vaginal opening were performed using contrasts within a one-way analysis of variance (ANOVA) to test for treatment effect. Comparisons of dosed groups to vehicle control for age and body weight were performed with Dunnett's method for adjusted contrasts.

For analysis of each endpoint, a sensitivity analysis was also performed. Of animals with PND at vaginal opening data, 91 core study animals (16 in vehicle control, 62 in BPA 2.5, 25, 250, 2500, and 25000 μ g/kg bw/day, and 13 in EE₂ μ g/kg bw/day dose groups) were held during initial preweaning in the same rooms as a special BPA 250,000 μ g/kg bw/day high dose requested by an academic laboratory. In consultation with the Principal Investigator, to address the possibility of inadvertent exposure of the core study animals, a sensitivity analysis excluding these 91 females was also performed to test the robustness of the results. Additional statistically significant pairwise comparisons from the sensitivity analysis are reported in the text.

4. Results

Due to protocol deviations, there were twelve animals in six cages excluded from the analysis of age and body weight at vaginal opening. There was delayed monitoring of vaginal opening for UIN=23000529417, 23000529592, 23000531129, and 23000531379 in the EE₂ dose, UIN=23000529337 and 23000529402 in the vehicle continuous control, and UIN=23000529338 and 23000529403 in the vehicle stop dose control. Because load number was mistaken, data was erroneously collected for UIN=23000535056 and 23000535043 in the vehicle continuous control, and UIN=23000534608 and 23000534959 in the BPA stop dose (these animals were replaced by animals in the correct load).

Results of core study analyses are presented in Tables in Appendix A.

4.1 BPA Treatments Stop-Dose Arm

Summary statistics for the BPA stop dose arm are presented in Table 1.

The ANOVA omnibus test results are given in Table 2 for the null hypothesis that all of the control and BPA stop dose treatment means for developmental measures are equal. There was no significant treatment effect for PND at vaginal opening.

Pairwise comparisons for the BPA stop dose arm are presented in Table 3. There was no significant trend or difference for any BPA stop dose treatment compared to the vehicle control for PND at vaginal opening.

In the sensitivity analysis for the BPA stop dose arm, there were no statistically significant pairwise comparisons of treatments to control.

4.2 BPA Treatments Continuous Dose Arm

Summary statistics for the BPA continuous dose arm are presented in Table 4.

The ANOVA omnibus test results are given in Table 5 for the null hypothesis that all of the control and BPA stop dose treatment means for developmental measures are equal. There was a significant treatment effect for body weight at vaginal opening (p=0.016).

Pairwise comparisons for the BPA continuous dose arm are presented in Table 6. There was no significant trend or difference for any BPA continuous treatment compared to the vehicle control for PND at vaginal opening.

In the sensitivity analysis for the BPA continuous dose arm, there were no statistically significant pairwise comparisons of treatments to control.

4.3 EE₂ Treatments Continuous Dose

Summary statistics for the EE₂ continuous dose are presented in Table 7.

The ANOVA omnibus test results are given in Table 8 for the null hypothesis that all of the control and EE_2 continuous dose treatment means for developmental measures are equal. There was no significant treatment effect for either body weight or PND at vaginal opening. Pairwise comparisons for the EE_2 continuous dose are presented in Table 9. There were no significant differences for EE_2 treatments compared to vehicle control for either body weight or PND at vaginal opening.

In the sensitivity analysis for EE₂ continuous dose, there were no statistically significant pairwise comparisons of treatments to control.

5. Conclusions

5.1 BPA Treatments Stop-Dose Arm

There were no statistically significant differences for the BPA stop dose arm in pairwise comparisons of treatments to control for PND at vaginal opening.

5.2 BPA Treatments Continuous Dose Arm

For pairwise comparisons of BPA continuous dose treatments to the vehicle control, there were no significant differences for body weight and PND at vaginal opening.

5.3 EE₂ Treatments Continuous Dose

There were no significant differences for EE_2 treatments compared to the vehicle control for either body weight or PND at vaginal opening.

Appendices

A. Statistical Tables

a) BPA Treatments Stop Dose Arm

at Vaginal Opening for Bisphenol-A Stop-Dose (µg/kg [,] Bw/day)										
Dose	N	PND Mean	SE							
0	26	41.1	1.8							
2.5	26	42.1	2.5							
25	25	40.0	1.5							
250	26	39.6	1.2							
2500	26	42.4	1.2							
25000	26	38.0	1.3							

Table 2. ANOVA for Developmental Measures at Vaginal Opening for Bisphenol-A Stop-Dose (µg/kg _{'BW} /day)											
Endpoint	NumDF	DenDF	Fvalue	P value							
PND	5	149	1.006	0.416							

E0219001 Analysis of Terminal Sacrifice Developmental Measures Data

	Table 3. Comparison of Least Squares Mean Developmental Measures at Vaginal Opening for Bisphenol-A Stop-Dose (µg/kg _{'BW} /day) ¹																						
	Dose																						
		0			2	.5			2	5			25	50			25	00			25	000	
Endpoint	Mean	SE	Pval ²	Mean	SE	Pct	Pval	Mean	SE	Pct	Pval	Mean	SE	Pct	Pval	Mean	SE	Pct	Pval	Mean	SE	Pct	Pval
PND	41.12	1.66	0.277	42.08	1.66	102.3	0.993	39.96	1.70	97.2	0.985	39.62	1.66	96.4	0.953	42.38	1.66	103.1	0.977	37.96	1.66	92.3	0.532

 1 Animal was the experimental unit for analysis; pairwise p-values and % are relative to control. 2 Dose trend is shown below the control group.

b) BPA Treatments Continuous Dose Arm

Tab E	le 4. Su Bisphen	mmary Sta ol-A Conti	tistics at nuous D	[:] Vagina ose (µg/l	l Opening kg [.] bw:/day)	for							
PND BW(g)													
Dose	N	Mean	SE	N	Mean	SE							
0	26	35.9	1.1	26	120.5	4.6							
2.5	25	35.2	0.7	25	117.1	5.0							
25	24	36.5	0.8	24	128.6	4.6							
250	25	37.8	1.4	25	131.1	5.8							
2500	25	34.1	0.5	25	109.6	2.6							
25000	24	35.4	0.6	24	121.0	4.3							

Tabl	e 5. ANOVA	for Developn	nental Measur	es at
Vaginal Open	ing for Bisph	enol-A Cont	inuous Dose (ug/kg [·] Bw [·] /day)
Endpoint	NumDF	DenDF	Fvalue	P value

Enapoint	NumDr	DenDF	<i>Fvaiue</i>	P value	_
Body Weight (g)	5	143	2.872	0.016	
PND	5	143	1.852	0.106	_

E0219001 Analysis of Terminal Sacrifice Developmental Measures Data

	T	able 6.	Compa	rison of	Least	Square	s Mean	Develop	omenta	l Meası	ires at	Vaginal	Openii	ng for B	Risphen	ol-A Cor	ıtinuoi	is Dose	e (µg/kg	' [™] /day)	1		
												Dose											
		0			2.	.5			2	5			2.	50			25	00			25	000	
Endpoint	Mean	SE	Pval ²	Mean	SE	Pct	Pval	Mean	SE	Pct	Pval	Mean	SE	Pct	Pval	Mean	SE	Pct	Pval	Mean	SE	Pct	Pval
Body Weight (g)	120.47	4.49	0.651	117.14	4.58	97.2	0.981	128.55	4.67	106.7	0.604	131.07	4.58	108.8	0.335	109.60	4.58	91.0	0.312	121.01	4.67	100.5	1.000
PND	35.88	0.90	0.565	35.16	0.91	98.0	0.972	36.50	0.93	101.7	0.987	37.76	0.91	105.2	0.451	34.12	0.91	95.1	0.510	35.38	0.93	98.6	0.994

 1 Animal was the experimental unit for analysis; pairwise p-values and % are relative to control. 2 Dose trend is shown below the control group.

c) EE₂ Treatments Continuous Dose

Tab	Table 7. Summary Statistics at Vaginal Opening for Ethinyl Estradiol Dose (µg/kg [·] Bw [/] /day)													
	PND BW(g)													
Dose	N	Mean	N	Mean	SE									
0	26	35.9	1.1	26	120.5	4.6								
0.05	25	35.5	0.7	25	123.0	4.8								
0.5	21	34.8	2.8	21	117.1	11.8								

Table at Vaginal Op	Table 8. ANOVA for Developmental Measures at Vaginal Opening for Ethinyl Estradiol Dose (µg/kg'BW/day)												
Endpoint	NumDF	DenDF	Fvalue	P value									
Body Weight (g)	2	69	0.156	0.855									
PND	2	69	0.115	0.891									

 Table 9. Comparison of Least Squares Mean Developmental Measures

 at Vaginal Opening for Ethinyl Estradiol Dose (µg/kg'_{BW}/day)¹

	Dose											
	0	0.5										
Endpoint	Mean	SE	Mean	SE	Pct	Pval	Mean	SE	Pct	Pval		
Body Weight (g)	120.47	6.94	122.96	7.07	102.1	0.956	117.11	7.72	97.2	0.928		
PND	35.88	1.58	35.52	1.61	99.0	0.981	34.76	1.76	96.9	0.853		

 $^{\rm 1}$ Animal was the experimental unit for analysis; pairwise p-values and % are relative to control.

B. Data

Developmental measures data were extracted from the Genesis database using SAS Proc SQL, utilizing the Vortex ODBC driver.

Quality Control

1. Data Verification

The extraction of the data into SAS was verified by the statistical reviewer by review of the SAS code used to extract and verify the data.

2. Computer Program Verification

SAS programs were used to extract the data, explore the distributional properties of the data, and perform the statistical analysis.

The SAS programs were verified by detailed review of the program code, the program log, and the program output.

3. Statistical Report Review

3.1 Statistical Report Text

The statistical report was reviewed for logic, internal completeness, technical appropriateness, technical accuracy, and grammar. Technical appropriateness was reviewed based on statistical expertise.

Comments and questions were provided from the reviewer to the statistician. The statistician made appropriate changes and returned the report to the reviewer for final verification.

The text of the final statistical report was considered by the reviewer to be logical, internally complete, and technically appropriate and accurate. The statistical results stated in the text accurately presented those in the tables.

3.2 Table Verification

Analysis results were output from SAS to .rtf files using PROC REPORT, which were then copied into the statistical report.

Statistical report tables were verified by checking the procedure used to create the tables and, additionally, by checking numbers sufficiently to conclude that the tables are correct.

4. Conclusions

The final statistical report has been fully reviewed and is considered by the reviewer to be logical, internally complete, and technically appropriate and accurate.