Table 3. Summary of community health relevant studies of MTR-mining exposure. | Citation | Sampling details | | Site characterization | Contaminant levels | Results | |--|--|--|---|---|--| | Aneja
et al.
(2012) | Virginia Aug 200 Air: • | | Exposure: road
near residential
area where
heavy truck
traffic from coal
surface mining
facilities was
reported (2 sites)
No control | Maximum level
PM ₁₀ : 469.7 μg/m ³ | PM ₁₀ samples exceeded EPA standard(150 μg/m³) in most of the samples from one site and half the samples from the other site Metals found in the samples included antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium | | Aneja
et al.
(2017) | Virginia
2012
Air: | PM ₁₀ Predicted PM _{2.5} | Exposure: at
Campbell, near
coal mines and,
at Willis, close to
a haul road
No control | 24-Hour averages Campbell site PM_{10} : 250.2 ± 135.0 $\mu g/m^3$ Willis site PM_{10} : 138.4 ± 62.9 $\mu g/m^3$ | PM ₁₀ samples exceeded EPA standard(150 µg/m³) Predicted PM _{2.5} exceeded the World Health Organization 24 hour PM _{2.5} standard on some days, according to the multi-variate model | | Ettinge
r and
McClur
e (1983) | West Vi
Sep 19
Air: | | drilling, overburden removal and coal loading Exposure 2: regrading of land Exposure 3: truck hauling of overburden and coal No control | Emission rates Exposure 1 381.6 kg/20 h Exposure 2 496.8 kg/20 h Exposure 3 0.2 g/s m | More fugitive dust
produced by surface
mining in Appalachian
coal fields compared with
similar activity in the
western United States | | Hendry
x et al.
(2012a) | West Virginia
2001–2009
Drinking water :
Public drinking
water violations | | Exposure 1: counties with MTR mining (161 facilities) Exposure 2: counties with coal mining other than MTR mining (184 facilities) Control: counties with no coal mining (137 facilities) | Not provided | alncreased numbers of violations in counties with MTR mining facilities (73% of overall violations) compared to those with other coal mining and control counties Failure to conduct required sampling for organic compounds accounts for 85% of the violations in the counties with MTR mining | | Kurth | W | |--------|----| | et al. | Jι | | (2014) | 20 | | | Δ | lest Virginia un 2011-May 012 ### Air: **TSP** - PM₁₀ - $PM_{2.5}$ Exposure: valleys surrounded by mountains where active MTR mining and other coal-mining activities (rail and truck transportation, underground mines, and coal processing facilities) were prominent (2) sites) Control: no mining activity, in area where ~ 60% of the land is federal or state owned (1 site) Maximum levels Exposure sites:b TSP: 27.7 µg/m³ PM_{10} : 10.6 $\mu g/m^3$ $PM_{2.5}$: 5.2 µg/m³ Control sites: TSP: 16 µg/m³ PM_{10} : 6.8 $\mu g/m^3$ $PM_{2.5}$: 5.4 µg/m³ alncreased particle number concentrations and calculated deposited lung dose in mining areas compared with control - ^aIncreased PM₁₀mass concentration at the MTR mining sites for the overall sampling period and during June and July - ^aIncreased PM_{2.5}mass concentration at the MTR mining site during July ## **Kurth** et al. (2015) West Virginia Jun 2011-Dec 2012 ### Air: - PM - Trace metals Exposure: majority of coal mined by MTR mining, but allows for contribution from contour and other methods (6 sites) "Internal" control: predominantly underground mining (2 sites) "External" control: no mining activity within 160 km, in areas where ~ 60% of land is federal or state owned (2 sites) ### Not provided # **Decreased sampled** PM in August 2011 (period of mining inactivity) in surface mining sites normalized to an internal control compared to sampled PM in June 2011 (a period of mining activity) in surface mining sites normalized to an external control Pronounced enrichment of crustal-derived elements present in PM samples in June 2011 (a period of mining activity) compared to external control (up to 10 ×) Increased lowmolecular-weight alkylated compounds (including PAHs) in surface mining sites compared to internal and external controls ^aIncreased primary aluminosilicate PM at surface mining sites compared to secondary PM at internal and external controls | (2002) | | Virginia, Kentucky
Nov 2000–Dec
2001
Well drinking
water: | | drinking water
wells in proximity
to surface mining
sites (5 sites)
No control | TDS: 1740 mg/L
TSS: 103 mg/L
Sulfate: 991 mg/L
Iron: 67.0 mg/L
Manganese: | TSS concentrations measured prior to and after blasting events in many monitoring wells Slight water quality | |--------|---------------------------------|---|-----------------|--|--|--| | | | • | Trace
metals | No comuo | 3.86 mg/L
Aluminum:
0.07 mg/L | changes were observed over time but were unrelated to blasting events | | | | | Sulfate | | | | | | | • | TDS | | | | | | | • | TSS | | | | | | Piacitel
li et al.
(1990) | Surface in the U States 1982–1 AIR: | | Exposure: strip mining and preparation facilities by job category No control | Not provided | Average concentrations of respirable coal mine dust usually below PELs; at least 10% of samples from preparation and most drilling areas exceeded PEL Very high proportion of respirable quartz silica samples in driller areas exceeded quartz PEL; highwall drill operators and helpers mostly exposed above PEL | | | Simont
on
(2014) | West V
2006–2
Indoor
•
Drinkin | 2011 | Exposure:
communities in
Appalachia
adjacent to
mining
operations (3
sites) ^c
No control | Maximum levels Drinking water: Sulfate: 372 mg/L Sulfide: 5.5 ppm Indoor air: H ₂ S: 21 ppm | H ₂ S released into indoor
air during domestic water
use from sulfide which
contaminates drinking
water aquifers
H ₂ S in homes exceeded
health safety standards | | | | | | | | | Maximum levels ^aDifferences in iron and Exposure: PM = particulate matter; PAH = polycyclic aromatic hydrocarbon; TSP = total suspended particles; H₂S = hydrogen sulfide; TDS = total dissolved solids; TSS = total suspended solids. a Statistically significant result. **OSMRE** Virginia, West - b Values provided by author communication. - c 3 sites represent 3 communities; exact number of sampling sites in those 3 communities is unclear.