U.S. flag

An official website of the United States government

Dot gov

The .gov means it's official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Share This:

Subchronic 10 day immunotoxicity of polydimethylsiloxane (silicone) fluid, gel and elastomer and polyurethane disks in female B6C3F1 mice

Bradley SG, Munson AE, McCay JA, Brown RD, Musgrove DL, Wilson S, Stern M, Luster MI, White KL Jr.
Drug Chem Toxicol. (1994) DOI: https://doi.org/10.3109/01480549409017860 PMID: 7988383



Millions of people have been exposed to silicones because of the widespread use in consumer products such as cosmetics and toiletries, food products, household products and paints. Silicones have wide use in medical practice, including lubricants in tubing and syringes, and as implantable devices. The most prevalent silicone in medical use is polydimethylsiloxane. This study was undertaken to determine the subchronic immunotoxicologic potential of the principal constituents of breast implants: silicone fluid, silicone gel and silicone elastomer. An alternative covering for devices containing silicone gels, polyurethane, was also included in the study. Silicone fluid and gel were injected subcutaneously into female B6C3F1 mice (1 ml/mouse) and 6 mm disks of silicone elastomer or polyurethane were implanted subcutaneously. There were no treatment-related deaths or overt signs of toxicity. None of the tested materials had notable effects on body or organ weights, erythrocytes or leukocytes in the blood, blood chemistries such as alanine aminotransferase, urea nitrogen, glucose, albumin or total protein. The cellularity of the bone marrow and responses to CSF-GM and CSF-M were normal. The tested silicones did not alter the distribution of B cells and T cells in the spleen, but polyurethane perturbed the distribution of CD4+CD8+ and CD4-CD8- T cells. The antibody response to sheep erythrocytes was not markedly altered, nor were proliferative responses to concanavalin A, phytohemagglutinin, lipopolysaccharide or allogeneic cells. Reticuloendothelial function was normal, but polyurethane evoked an enhanced phagocytosis of Covaspheres by adherent peritoneal cells. Natural killer cell activity and serum complement were not altered. All silicone materials afforded modest protection to a challenge with Listeria monocytogenes that killed 40 to 58% of control mice. Host resistance to Streptococcus pneumoniae or the B16F10 tumor was not affected by any of the treatments. There is a pattern indicative of some perturbation of T cell differentiation in mice implanted with a polyurethane disk.