COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information from CDC and research information from NIH.

U.S. flag

An official website of the United States government

Dot gov

The .gov means it's official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Share This:

An Integrated Chemical Environment to Support 21st-Century Toxicology

Bell SM, Phillips J, Sedykh A, Tandon A, Sprankle C, Morefield SQ, Shapiro A, Allen D, Shah R, Maull EA, Casey WM, Kleinstreuer NC.
Environmental Health Perspectives (2017) DOI: https://doi.org/10.1289/ehp1759 PMID: 28557712


Publication


Abstract

SUMMARY: Access to high-quality reference data is essential for the development, validation, and implementation of in vitro and in silico approaches that reduce and replace the use of animals in toxicity testing. Currently, these data must often be pooled from a variety of disparate sources to efficiently link a set of assay responses and model predictions to an outcome or hazard classification. To provide a central access point for these purposes, the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods developed the Integrated Chemical Environment (ICE) web resource. The ICE data integrator allows users to retrieve and combine data sets and to develop hypotheses through data exploration. Open-source computational workflows and models will be available for download and application to local data. ICE currently includes curated in vivo test data, reference chemical information, in vitro assay data (including Tox21TM/ToxCastâ„¢ high-throughput screening data), and in silico model predictions. Users can query these data collections focusing on end points of interest such as acute systemic toxicity, endocrine disruption, skin sensitization, and many others. ICE is publicly accessible at https://ice.ntp.niehs.nih.gov. https://doi.org/10.1289/EHP1759.

Figures


Figure 1. Integrated Chemical Environment (ICE) users, resources, and outcomes.

ICE was developed to support three main user roles: method developers, chemical producers, and risk assessors. The center panel lists the resources ICE provides to help these user groups complete some of the major tasks listed in the right panel.

Tables


Table 1. Data types included in 2017 ICE releases and example end points.